Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for th...Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for the culture of puffer fish,Takifugu rubripes,at different ages and densities were studied.In overall,47807 optimized reads of the 16 S rRNA gene with V4-V5 region were obtained from four biofilm samples collected after biofilm maturation.At 97%cut-off level,these sequences were clustered into 500 operational taxonomic units,and were classified into 19 bacterial phyla and 138 genera.At the phylum level,Proteobacteria and Bacteroidetes were the most abundant,followed by Nitrospirae and Planctomycetes.At the genus level,Colwellia,Marinifilum,Oceanospirillum,Lutibacter,Winogradskyella,Pseudoalteromonas,Arcobacter,and Phaeobacter were the top members.Nitrosomonas and Nitrospira were main ammonia-and nitrite-oxidizing bacteria.Differences in bacterial communities at different sampling dates and similarities of both biofilters were revealed in the Venn diagram and cluster analysis.Maintaining a good water quality and health offarmed fish in RASs depended on the correct management of the bacterial communities.This study provides more accurate information on the bacterial communities associated with the bifilters of both RASs.展开更多
BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory...BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory disease with specific clinical manifestations.Many patients with diabetes present with concurrent inflammatory symptoms.Diabetes exacerbates intestinal permeability and intestinal inflammation,thus leading to the progression to AP.Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice.AIM To investigate the potential protective role of FGF21 against AP in diabetic mice.METHODS In the present study,a mouse model of AP was established in diabetic(db)/db diabetic mice through ceruletide injections.Thereafter,the protective effects of recombinant FGF21 protein against AP were evaluated,with an emphasis on examining serum amylase(AMS)levels and pancreatic and intestinal inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-alpha(TNF-),and intestinal IL-1β].Additionally,the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP.An antibiotic(Abx)cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, thePhylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformaticssoftware package, was used to predict different pathways between the groups and to explore the potentialmechanisms by which the gut microbiota influenced the protective effect of FGF21.RESULTSThe results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01)and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ±0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notablesigns of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation inthe small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantlyaltered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment withan Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ±0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinaltissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P <0.001). These findings underscored the superior protective effects of the combination therapy involving an Abxcocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota compositionacross different groups was further characterized, and a differential expression analysis of gene functions wasundertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confertherapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathwayof n-acetylceramide degradation in the gut microbiota.CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing bloodglucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effectsof FGF21 are augmented when combined with the Abx cocktail.展开更多
Photosynthesis is the basis of plant growth and development as well as the existence of the biological world. Photosynthesis is of great theoretical and practical significance. In this paper, the effects of temperatur...Photosynthesis is the basis of plant growth and development as well as the existence of the biological world. Photosynthesis is of great theoretical and practical significance. In this paper, the effects of temperature, drought, salt, light and other abiotic stress factors on plant photosynthesis were reviewed.展开更多
By measuring water temperature,salinity,pH,dissolved oxygen,nitrite and ammonia nitrogen,the annual variation regularity of water quality in the aquaculture ponds for sea cucumbers Apostichopus japonicus in Dalian wer...By measuring water temperature,salinity,pH,dissolved oxygen,nitrite and ammonia nitrogen,the annual variation regularity of water quality in the aquaculture ponds for sea cucumbers Apostichopus japonicus in Dalian were studied.Results showed that the physicochemical indicators kept changing in the year,and the various ranges of water temperature,salinity,pH,dissolved oxygen,nitrite,and ammonia nitrogen were 6.38-27.27℃,29.20‰-33.78‰,7.86-8.38,5.19-13.36 mg/L,0.0037-0.0090 mg/L and 0.0171-0.0908 mg/L,respectively.Analysis indicated that there was an extremely significant negative correlation between water temperature and dissolved oxygen(P<0.01),an extremely significant positive correlation between water temperature and ammonia nitrogen(P<0.01),a significant negative correlation between salinity and nitrite(P<0.05),a significant negative correlation between dissolved oxygen and nitrite(P<0.05),and an extremely significant negative correlation between dissolved oxygen and ammonia nitrogen(P<0.01)in the aquaculture ponds for sea cucumber in Dalian.Research showed that the water quality of aquaculture ponds kept fluctuating all the time during the tested period,there were complicated and close relationships among physicochemical indicators,and a slight variation of external factors would bring consecutive reactions to different indicators in the water quality of aquaculture ponds.A reference for the production and management of sea cucumbers could be provided from the results.展开更多
Complicated mining operations and underground mining are important features of China's coal mining. Due to the limitation of cost and time limit, the coal mining operation can usually be completed through cross-op...Complicated mining operations and underground mining are important features of China's coal mining. Due to the limitation of cost and time limit, the coal mining operation can usually be completed through cross-operation construction. Although this method can shorten the working hours to a certain extent, high risks also follow, which puts forward higher requirements for the safety management of underground work. Especially during the period of installation and withdrawal of fully mechanized coal mining face in coal mine, multiple types of work cooperate with each other, auxiliary transportation of explosion-proof vehicles, frame-type trackless rubber-tyred vehicles, battery cars, support vehicles and other vehicles cooperate with each other at the same time. Therefore, reducing the number of potential safety hazards caused by cross-operation has become the top priority of cross-operation safety management. This paper analyzes and summarizes the reasons for the frequent installation and withdrawal of fully mechanized coal mining face and the cooperation of multiple types of work with cross-operation, and formulates corresponding control measures, hoping to help improve the safety management level of coal mine electromechanical transportation and play a role in preventing accidents.展开更多
Since ancient times, our country has a tradition of "relying on the mountain to eat and the water to drink". The relationship between people and nature is very close. The increase in fishing intensity has le...Since ancient times, our country has a tradition of "relying on the mountain to eat and the water to drink". The relationship between people and nature is very close. The increase in fishing intensity has led to a significant decrease in fishery resources, coupled with the environmental climate change caused by over-reclamation, which has led to the destruction of the ecological environment of many rivers and lakes, with a significant impact on species resources and production. At present, it is of great significance to take effective measures to promote the sustainable development of fishery.展开更多
With the continuous development of coal mine automation mining technology, the motor as the power source of automatic mine system, its role is self-evident. As the core component of motor power output, the motor rotor...With the continuous development of coal mine automation mining technology, the motor as the power source of automatic mine system, its role is self-evident. As the core component of motor power output, the motor rotor shaft requires very high precision. This paper analyzes and discusses the motor rotor repair technology from many aspects, hoping to provide some reference for related workers.展开更多
The development process of fully mechanized mining has entered a stable stage of development. It can not only improve the coal mining rate, but also effectively ease the labor intensity of workers and speed up the pac...The development process of fully mechanized mining has entered a stable stage of development. It can not only improve the coal mining rate, but also effectively ease the labor intensity of workers and speed up the pace of development of the coal mining industry. Although the mechanized operation is slowly being realized during the fully mechanized coal mining period, the relevant personnel have not paid the necessary attention to the installation and withdrawal link, resulting in its not being developed by leaps and bounds. In view of this, this paper attempts to discuss the installation and withdrawal of fully mechanized coal mining face, the installation and withdrawal of fully mechanized coal mining face and the related matters needing attention after installation and withdrawal.展开更多
Groundwater is a key part of the terrestrial ecosystem,but it is vulnerable to pollution in the context of chemical industry development.Treating contaminated groundwater is challenging due to its stable water quality...Groundwater is a key part of the terrestrial ecosystem,but it is vulnerable to pollution in the context of chemical industry development.Treating contaminated groundwater is challenging due to its stable water quality,hidden contamination,and complex treatment requirements.Current research focuses on advanced treatment technologies,among which the advanced oxidation process(AOPs) of peroxomonosulfate(PMS) has great potential.Although there are many reviews of PMS-based AOP,most of them focus on surface water.This review aims to explore the activation reaction of PMS to groundwater by in-situ chemical oxidation(ISCO) technology,further study the reaction mechanism,compare the treatment effect of characteristic pollutants in the groundwater of the chemical industry park,propose new activation methods and catalyst selection,and provide guidance for future groundwater treatment research.展开更多
基金Supported by the National Key R&D Program of China(No.2017YFD0701700)National Natural Science Foundation of China(Nos.31472312,31672673)。
文摘Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for the culture of puffer fish,Takifugu rubripes,at different ages and densities were studied.In overall,47807 optimized reads of the 16 S rRNA gene with V4-V5 region were obtained from four biofilm samples collected after biofilm maturation.At 97%cut-off level,these sequences were clustered into 500 operational taxonomic units,and were classified into 19 bacterial phyla and 138 genera.At the phylum level,Proteobacteria and Bacteroidetes were the most abundant,followed by Nitrospirae and Planctomycetes.At the genus level,Colwellia,Marinifilum,Oceanospirillum,Lutibacter,Winogradskyella,Pseudoalteromonas,Arcobacter,and Phaeobacter were the top members.Nitrosomonas and Nitrospira were main ammonia-and nitrite-oxidizing bacteria.Differences in bacterial communities at different sampling dates and similarities of both biofilters were revealed in the Venn diagram and cluster analysis.Maintaining a good water quality and health offarmed fish in RASs depended on the correct management of the bacterial communities.This study provides more accurate information on the bacterial communities associated with the bifilters of both RASs.
基金the 2022 Zhejiang Provincial Health Science and Technology Plan,No.2022KY1216.
文摘BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory disease with specific clinical manifestations.Many patients with diabetes present with concurrent inflammatory symptoms.Diabetes exacerbates intestinal permeability and intestinal inflammation,thus leading to the progression to AP.Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice.AIM To investigate the potential protective role of FGF21 against AP in diabetic mice.METHODS In the present study,a mouse model of AP was established in diabetic(db)/db diabetic mice through ceruletide injections.Thereafter,the protective effects of recombinant FGF21 protein against AP were evaluated,with an emphasis on examining serum amylase(AMS)levels and pancreatic and intestinal inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-alpha(TNF-),and intestinal IL-1β].Additionally,the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP.An antibiotic(Abx)cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, thePhylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformaticssoftware package, was used to predict different pathways between the groups and to explore the potentialmechanisms by which the gut microbiota influenced the protective effect of FGF21.RESULTSThe results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01)and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ±0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notablesigns of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation inthe small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantlyaltered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment withan Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ±0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinaltissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P <0.001). These findings underscored the superior protective effects of the combination therapy involving an Abxcocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota compositionacross different groups was further characterized, and a differential expression analysis of gene functions wasundertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confertherapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathwayof n-acetylceramide degradation in the gut microbiota.CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing bloodglucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effectsof FGF21 are augmented when combined with the Abx cocktail.
基金Supported by Science and Technology Innovation Fund of Dalian City(2019J13SN120)Guiding Project of Natural Science Foundation of Liaoning Province(20170540035)Undergraduate Innovation and Enterpreneurship Training Program of China(201911258016)
文摘Photosynthesis is the basis of plant growth and development as well as the existence of the biological world. Photosynthesis is of great theoretical and practical significance. In this paper, the effects of temperature, drought, salt, light and other abiotic stress factors on plant photosynthesis were reviewed.
基金the National Oceanic and Public Research Project(201405003).
文摘By measuring water temperature,salinity,pH,dissolved oxygen,nitrite and ammonia nitrogen,the annual variation regularity of water quality in the aquaculture ponds for sea cucumbers Apostichopus japonicus in Dalian were studied.Results showed that the physicochemical indicators kept changing in the year,and the various ranges of water temperature,salinity,pH,dissolved oxygen,nitrite,and ammonia nitrogen were 6.38-27.27℃,29.20‰-33.78‰,7.86-8.38,5.19-13.36 mg/L,0.0037-0.0090 mg/L and 0.0171-0.0908 mg/L,respectively.Analysis indicated that there was an extremely significant negative correlation between water temperature and dissolved oxygen(P<0.01),an extremely significant positive correlation between water temperature and ammonia nitrogen(P<0.01),a significant negative correlation between salinity and nitrite(P<0.05),a significant negative correlation between dissolved oxygen and nitrite(P<0.05),and an extremely significant negative correlation between dissolved oxygen and ammonia nitrogen(P<0.01)in the aquaculture ponds for sea cucumber in Dalian.Research showed that the water quality of aquaculture ponds kept fluctuating all the time during the tested period,there were complicated and close relationships among physicochemical indicators,and a slight variation of external factors would bring consecutive reactions to different indicators in the water quality of aquaculture ponds.A reference for the production and management of sea cucumbers could be provided from the results.
文摘Complicated mining operations and underground mining are important features of China's coal mining. Due to the limitation of cost and time limit, the coal mining operation can usually be completed through cross-operation construction. Although this method can shorten the working hours to a certain extent, high risks also follow, which puts forward higher requirements for the safety management of underground work. Especially during the period of installation and withdrawal of fully mechanized coal mining face in coal mine, multiple types of work cooperate with each other, auxiliary transportation of explosion-proof vehicles, frame-type trackless rubber-tyred vehicles, battery cars, support vehicles and other vehicles cooperate with each other at the same time. Therefore, reducing the number of potential safety hazards caused by cross-operation has become the top priority of cross-operation safety management. This paper analyzes and summarizes the reasons for the frequent installation and withdrawal of fully mechanized coal mining face and the cooperation of multiple types of work with cross-operation, and formulates corresponding control measures, hoping to help improve the safety management level of coal mine electromechanical transportation and play a role in preventing accidents.
文摘Since ancient times, our country has a tradition of "relying on the mountain to eat and the water to drink". The relationship between people and nature is very close. The increase in fishing intensity has led to a significant decrease in fishery resources, coupled with the environmental climate change caused by over-reclamation, which has led to the destruction of the ecological environment of many rivers and lakes, with a significant impact on species resources and production. At present, it is of great significance to take effective measures to promote the sustainable development of fishery.
文摘With the continuous development of coal mine automation mining technology, the motor as the power source of automatic mine system, its role is self-evident. As the core component of motor power output, the motor rotor shaft requires very high precision. This paper analyzes and discusses the motor rotor repair technology from many aspects, hoping to provide some reference for related workers.
文摘The development process of fully mechanized mining has entered a stable stage of development. It can not only improve the coal mining rate, but also effectively ease the labor intensity of workers and speed up the pace of development of the coal mining industry. Although the mechanized operation is slowly being realized during the fully mechanized coal mining period, the relevant personnel have not paid the necessary attention to the installation and withdrawal link, resulting in its not being developed by leaps and bounds. In view of this, this paper attempts to discuss the installation and withdrawal of fully mechanized coal mining face, the installation and withdrawal of fully mechanized coal mining face and the related matters needing attention after installation and withdrawal.
基金supported by the National Key Research and Development Program of China (No.2023YFC3708005)the National Natural Science Foundation of China (Nos.21872102,22172080)the Fundamental Research Funds for the Central Universities (Nankai University,No.63241208)。
文摘Groundwater is a key part of the terrestrial ecosystem,but it is vulnerable to pollution in the context of chemical industry development.Treating contaminated groundwater is challenging due to its stable water quality,hidden contamination,and complex treatment requirements.Current research focuses on advanced treatment technologies,among which the advanced oxidation process(AOPs) of peroxomonosulfate(PMS) has great potential.Although there are many reviews of PMS-based AOP,most of them focus on surface water.This review aims to explore the activation reaction of PMS to groundwater by in-situ chemical oxidation(ISCO) technology,further study the reaction mechanism,compare the treatment effect of characteristic pollutants in the groundwater of the chemical industry park,propose new activation methods and catalyst selection,and provide guidance for future groundwater treatment research.