Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig...Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.展开更多
In response to the challenges of sand production and high water cut during the exploitation of oil reservoirs in unconsolidated sandstones,a novel sand-water dual-control functional polymer,PDSM,was synthesized using ...In response to the challenges of sand production and high water cut during the exploitation of oil reservoirs in unconsolidated sandstones,a novel sand-water dual-control functional polymer,PDSM,was synthesized using acrylamide(AM),methacryloxyethyltrimethyl ammonium chloride(DMC),and styrene monomer(SM)as raw materials.The chemical structure and thermal stability of PDSM were verified by1H-NMR,FT-IR,and TGA analyses.To evaluate its performance,functional polymers PDM and PSM,containing only DMC or SM,respectively,were used as control groups.The study systematically investigated the static adsorption,sand production,sand leakage time,standard water-oil resistance ratio,and water cut reduction performance of PDSM.The results demonstrated that,due to the synergistic effect of functional monomers DMC and SM,PDSM exhibited superior dual-control over sand and water compared to PDM and PSM.PDSM enhanced wettability properties reduce the contact angle of the water phase on oil-wet rock surfaces to 64.0°,facilitating better adsorption of polymer molecules on the rock surface and achieving a static adsorption capacity of 14.6 mg/g.PDSM effectively bridges/bundles sand grains through SM and DMC,increasing resistance to fluid erosion.At a flow rate of 100 mL/min,sand production was only 0.026 g/L,surpassing the"Q/SH 10202377-2020"standard for sand inhibitors,which defines"excellent"performance as having a sand production rate of≤0.05 g/L.PDSM forms an adsorption layer(polymer concentrated layer)on the rock surface,expanding when in contact with water and shrinking when in contact with oil,thereby significantly reducing the permeability of the water layer without affecting the permeability of the oil layer.The standard water-oil resistance ratio was measured at 5.41,and the watercut of produced fluid was reduced by 18.6%.These findings provide new theoretical insights and technical guidance for developing dual-function sand-water control agents.展开更多
Objective:To evaluate the effects of Stellera chamaejasme L.(S.chamaejasme,Rui Xiang Lang Du)extract on hair growth in a mouse model.Methods:The extract was prepared using 95%ethanol and topically applied as a 1%or 3%...Objective:To evaluate the effects of Stellera chamaejasme L.(S.chamaejasme,Rui Xiang Lang Du)extract on hair growth in a mouse model.Methods:The extract was prepared using 95%ethanol and topically applied as a 1%or 3%solution to the dorsal skin of shaved mice for 16 consecutive days.A control mouse group received an equal volume of vehicle for the same period.After 16 days,the dorsal skin was histologically examined through hematoxylin-eosin staining.Further,quantitative real time-polymerase chain reaction was performed on skin tissue lysates to evaluate the expression levels of mRNAs encoding proteins involved in hair growth,including WNT10A,noggin(NOG),transforming growth factor-β receptor 1(TBR1),epidermal growth factor(EGF),versican,fibroblast growth factor 10(FGF10),lymphoid enhancer-binding factor 1(LEF1),and transforming growth factor-β(TGF-β).Results:Compared with vehicle,S.chamaejasme extract dose-dependently enhanced hair growth.Histological analysis revealed that S.chamaejasme extract increased the number and diameter of hair follicles in subcutaneous tissue,as well as dermal layer thickness,which are indicative of anagen phase induction.Additionally,S.chamaejasme extract upregulated the mRNA expression levels of WNT10A,NOG,TBR1,EFG,FGF10,LEF1,and TGF-β.Conclusion:The results suggest that S.chamaejasme extract could be a potential treatment for promoting hair growth.展开更多
Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic ...Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic Janus nanosheets was effectively carried out for enhancing the system performances and subsequently characterized.Based on the outcomes of orthogonal tests,an assessment was conducted on the nanosheet and surfactant formulations to optimize the enhancement of emulsion properties.The experimental demonstration of the complex system has revealed its remarkable emulsifying capability,ability to decrease interfacial tension and improve rheological behavior at high temperature(80℃)and high salinity(35,000 ppm)conditions.Involving probable mechanism of the system performance enhancement is elucidated by considering the synergistic effect between surfactants and nanosheets.Furthermore,variables including water-to-oil ratio,salinity,temperature and stirring intensity during operation,which affect the properties of prepared emulsions,were investigated in detail.The efficacy and stability of the complex system in obstructing medium and high permeability cores were demonstrated.Notably,the core with a high permeability of 913.58 mD exhibited a plugging rate of 98.55%.This study establishes the foundations of medium and high permeability reservoirs plugging with novel active crude oil plugging agents in severe environments.展开更多
A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO...A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.展开更多
Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used...Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used to prepare nano-P(MMA-AA-EA)with MMA,AA and EA as the monomers,DVB as the cross-linker and APS as the initiator.The resulting products are characterized by FT-IR.Furthermore,the surface tension and particles size analysis is investigated.The results show that the surface tension reduction is 10.66 mN/m at 20?C when the concentration of co-polymer is 1000 ppm and the average size is 76.99 nm.Moreover,the HLB of polymer is discussed specifically by changing the amount of AA.With the increase of AA,the HLB value of the polymer is increased accordingly.Besides,the demulsification performance of the co-polymer is also evaluated at different synthesis and demulsification conditions.It is showed that the maximum demulsification efficiency is 96%at 70?C for 60 min.The optimum concentration of demulsifier is 400 ppm when the amounts of AA and DVB are 1.4 g and 0.1 g,respectively.At last,the process of demulsification is showed under a microscope;the coalescence process of water droplets is indicated under the action of the demulsifier.展开更多
Compared with conventional gas reservoir,percolation mechanism of coalbed methane(CBM)is completely different,it is remarkably affected by adsorption/desorption performance,pressure variation and coalbed characteristi...Compared with conventional gas reservoir,percolation mechanism of coalbed methane(CBM)is completely different,it is remarkably affected by adsorption/desorption performance,pressure variation and coalbed characteristics.Then it is difficult to calculate the controlled reserves of CBM wells.Moreover,the connection of edge-bottom water or interbedded water by fractures or faults may largely increase the water yield and drainage period,leading to obvious water invasion in some CBM wells.There are few literature about the predicted production for CBM wells with high water yield.Focusing on the unconventional CBM reservoir,methods of pseudo geological reserves and production index curves are adopted to establish the calculation model of water influx and controlled reserves.It further confirms that the calculation model is successfully applicated on the CBM wells at the middle part of Qinshui Basin in China.展开更多
基金supported by the National Natural Science Foundation project“Micro-Scale Effect of Oil-Gas Flow and the Mechanism of Enhancing Shale Oil Recovery by Natural Gas Injection”(No.52074317)。
文摘Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.
基金supported by the National Natural Science Foundation of China(General Program)(Grant No.52474071)the financial support from the China Scholarship Council(TM.Lei,No.202406450004)。
文摘In response to the challenges of sand production and high water cut during the exploitation of oil reservoirs in unconsolidated sandstones,a novel sand-water dual-control functional polymer,PDSM,was synthesized using acrylamide(AM),methacryloxyethyltrimethyl ammonium chloride(DMC),and styrene monomer(SM)as raw materials.The chemical structure and thermal stability of PDSM were verified by1H-NMR,FT-IR,and TGA analyses.To evaluate its performance,functional polymers PDM and PSM,containing only DMC or SM,respectively,were used as control groups.The study systematically investigated the static adsorption,sand production,sand leakage time,standard water-oil resistance ratio,and water cut reduction performance of PDSM.The results demonstrated that,due to the synergistic effect of functional monomers DMC and SM,PDSM exhibited superior dual-control over sand and water compared to PDM and PSM.PDSM enhanced wettability properties reduce the contact angle of the water phase on oil-wet rock surfaces to 64.0°,facilitating better adsorption of polymer molecules on the rock surface and achieving a static adsorption capacity of 14.6 mg/g.PDSM effectively bridges/bundles sand grains through SM and DMC,increasing resistance to fluid erosion.At a flow rate of 100 mL/min,sand production was only 0.026 g/L,surpassing the"Q/SH 10202377-2020"standard for sand inhibitors,which defines"excellent"performance as having a sand production rate of≤0.05 g/L.PDSM forms an adsorption layer(polymer concentrated layer)on the rock surface,expanding when in contact with water and shrinking when in contact with oil,thereby significantly reducing the permeability of the water layer without affecting the permeability of the oil layer.The standard water-oil resistance ratio was measured at 5.41,and the watercut of produced fluid was reduced by 18.6%.These findings provide new theoretical insights and technical guidance for developing dual-function sand-water control agents.
基金supported by an intramural research grant(Development of Data Utilization Technology for Natural Product Research,2E33521)from the Korea Institute of Science and Technology(KIST)the data were deposited in the KIST Dashboard.
文摘Objective:To evaluate the effects of Stellera chamaejasme L.(S.chamaejasme,Rui Xiang Lang Du)extract on hair growth in a mouse model.Methods:The extract was prepared using 95%ethanol and topically applied as a 1%or 3%solution to the dorsal skin of shaved mice for 16 consecutive days.A control mouse group received an equal volume of vehicle for the same period.After 16 days,the dorsal skin was histologically examined through hematoxylin-eosin staining.Further,quantitative real time-polymerase chain reaction was performed on skin tissue lysates to evaluate the expression levels of mRNAs encoding proteins involved in hair growth,including WNT10A,noggin(NOG),transforming growth factor-β receptor 1(TBR1),epidermal growth factor(EGF),versican,fibroblast growth factor 10(FGF10),lymphoid enhancer-binding factor 1(LEF1),and transforming growth factor-β(TGF-β).Results:Compared with vehicle,S.chamaejasme extract dose-dependently enhanced hair growth.Histological analysis revealed that S.chamaejasme extract increased the number and diameter of hair follicles in subcutaneous tissue,as well as dermal layer thickness,which are indicative of anagen phase induction.Additionally,S.chamaejasme extract upregulated the mRNA expression levels of WNT10A,NOG,TBR1,EFG,FGF10,LEF1,and TGF-β.Conclusion:The results suggest that S.chamaejasme extract could be a potential treatment for promoting hair growth.
基金financially supported by National Natural Science Foundation of China(52374053)Beijing Natural Science Foundation(2204092)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(2018000020124G163)。
文摘Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic Janus nanosheets was effectively carried out for enhancing the system performances and subsequently characterized.Based on the outcomes of orthogonal tests,an assessment was conducted on the nanosheet and surfactant formulations to optimize the enhancement of emulsion properties.The experimental demonstration of the complex system has revealed its remarkable emulsifying capability,ability to decrease interfacial tension and improve rheological behavior at high temperature(80℃)and high salinity(35,000 ppm)conditions.Involving probable mechanism of the system performance enhancement is elucidated by considering the synergistic effect between surfactants and nanosheets.Furthermore,variables including water-to-oil ratio,salinity,temperature and stirring intensity during operation,which affect the properties of prepared emulsions,were investigated in detail.The efficacy and stability of the complex system in obstructing medium and high permeability cores were demonstrated.Notably,the core with a high permeability of 913.58 mD exhibited a plugging rate of 98.55%.This study establishes the foundations of medium and high permeability reservoirs plugging with novel active crude oil plugging agents in severe environments.
文摘A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.
基金the Open Project Program of State Key Laboratory of Petroleum Pollution Control(Grant No.PPC2016006)CNPC Research Institute of Safety and Environmental Technology.
文摘Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used to prepare nano-P(MMA-AA-EA)with MMA,AA and EA as the monomers,DVB as the cross-linker and APS as the initiator.The resulting products are characterized by FT-IR.Furthermore,the surface tension and particles size analysis is investigated.The results show that the surface tension reduction is 10.66 mN/m at 20?C when the concentration of co-polymer is 1000 ppm and the average size is 76.99 nm.Moreover,the HLB of polymer is discussed specifically by changing the amount of AA.With the increase of AA,the HLB value of the polymer is increased accordingly.Besides,the demulsification performance of the co-polymer is also evaluated at different synthesis and demulsification conditions.It is showed that the maximum demulsification efficiency is 96%at 70?C for 60 min.The optimum concentration of demulsifier is 400 ppm when the amounts of AA and DVB are 1.4 g and 0.1 g,respectively.At last,the process of demulsification is showed under a microscope;the coalescence process of water droplets is indicated under the action of the demulsifier.
基金The work was supported by the Natural Science Foundation of China(No.U1762212 and 51374181)the State Key Laboratory of CBM Enrichment Mechanisms(No.2016SZ05036-002).
文摘Compared with conventional gas reservoir,percolation mechanism of coalbed methane(CBM)is completely different,it is remarkably affected by adsorption/desorption performance,pressure variation and coalbed characteristics.Then it is difficult to calculate the controlled reserves of CBM wells.Moreover,the connection of edge-bottom water or interbedded water by fractures or faults may largely increase the water yield and drainage period,leading to obvious water invasion in some CBM wells.There are few literature about the predicted production for CBM wells with high water yield.Focusing on the unconventional CBM reservoir,methods of pseudo geological reserves and production index curves are adopted to establish the calculation model of water influx and controlled reserves.It further confirms that the calculation model is successfully applicated on the CBM wells at the middle part of Qinshui Basin in China.