Ginsenosides,the bioactive saponins primary found in Panax ginseng,possess a complex structure that underlies their diverse pharmacological properties.Ginsenoside Rg3 stands out for its broad therapeutic potential,inc...Ginsenosides,the bioactive saponins primary found in Panax ginseng,possess a complex structure that underlies their diverse pharmacological properties.Ginsenoside Rg3 stands out for its broad therapeutic potential,including anticancer,anti-inflammatory,neuroprotective,and cardiovascular effects.This review provides a comprehensive overview of the cellular and molecular mechanisms of Rg3,emphasizing its roles in regulating apoptosis,inflammation,oxidative stress,and metabolic pathways relevant to skincare and anticancer applications.The unique biological activities of its isomeric forms,20(S)-Rg3 and 20(R)-Rg3,are highlighted,alongside strategies to enhance its bioavailability,such as nanoencapsulation and prodrug design.Additionally,the synergistic effects of Rg3 when combined with other treatments are discussed,underscoring its promise as a bridging agent between conventional and emerging therapies in dermatology and oncology.Finally,the current research gaps are identified,and future directions are proposed to further optimize the clinical application of Rg3.展开更多
Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influ...Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influencing the diffusion and precipitation behavior of micro-alloying elements.This study investigated the effects of the cooling rate on the microstructure and corrosion behavior of micro-Ca and-Y alloyed cast AZ91 alloy(i.e.,AZXW9100).To achieve various cooling rates,the alloys were prepared using three methods:steel mold casting(SMC),copper step mold casting(CSMC),and high-pressure die casting(HPDC).The corrosion behavior was analyzed through weight loss measurements,electrochemical impedance spectroscopy,and corrosion morphology observations.The results showed that the key microstructural factors influencing corrosion resistance differed between short-and long-term corrosion.As the cooling rate increased,the short-term corrosion rate was lowered from 0.91 mm/y(SMC)to 0.38 mm/y(HPDC),which was attributed to the decrease in the total area fractions of the eutecticαandβphases acting as galvanic corrosion sources.The long-term corrosion rate was reduced from 17.20 mm/y(SMC)to 0.71 mm/y(HPDC),which was revealed to be due to the enhanced connectivity of theβphase acting as corrosion barriers.Meanwhile,the increase in the cooling rate led to a modification of the Zn molar ratio in theβphase,reducing the Volta potential of theβphase from 101.8 m V to 66.9 m V.This reduction in the Volta potential of the main galvanic source also contributed to improved corrosion resistance.The HPDC AZXW9100 alloy produced in this study exhibited the lowest corrosion rate compared to other alloys.These findings suggest that controlling the cooling rate is a promising strategy for enhancing the corrosion resistance of AZXW9100 alloys.展开更多
基金supported by the Agricultural Corporation Korean Master Ginseng Co.,Ltd.,Republic of Korea.
文摘Ginsenosides,the bioactive saponins primary found in Panax ginseng,possess a complex structure that underlies their diverse pharmacological properties.Ginsenoside Rg3 stands out for its broad therapeutic potential,including anticancer,anti-inflammatory,neuroprotective,and cardiovascular effects.This review provides a comprehensive overview of the cellular and molecular mechanisms of Rg3,emphasizing its roles in regulating apoptosis,inflammation,oxidative stress,and metabolic pathways relevant to skincare and anticancer applications.The unique biological activities of its isomeric forms,20(S)-Rg3 and 20(R)-Rg3,are highlighted,alongside strategies to enhance its bioavailability,such as nanoencapsulation and prodrug design.Additionally,the synergistic effects of Rg3 when combined with other treatments are discussed,underscoring its promise as a bridging agent between conventional and emerging therapies in dermatology and oncology.Finally,the current research gaps are identified,and future directions are proposed to further optimize the clinical application of Rg3.
基金supported by the Materials and Components Technology Development Program of the Ministry of Trade,Industry,and Energy(MOTIE,South Korea)(No.20024843)。
文摘Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influencing the diffusion and precipitation behavior of micro-alloying elements.This study investigated the effects of the cooling rate on the microstructure and corrosion behavior of micro-Ca and-Y alloyed cast AZ91 alloy(i.e.,AZXW9100).To achieve various cooling rates,the alloys were prepared using three methods:steel mold casting(SMC),copper step mold casting(CSMC),and high-pressure die casting(HPDC).The corrosion behavior was analyzed through weight loss measurements,electrochemical impedance spectroscopy,and corrosion morphology observations.The results showed that the key microstructural factors influencing corrosion resistance differed between short-and long-term corrosion.As the cooling rate increased,the short-term corrosion rate was lowered from 0.91 mm/y(SMC)to 0.38 mm/y(HPDC),which was attributed to the decrease in the total area fractions of the eutecticαandβphases acting as galvanic corrosion sources.The long-term corrosion rate was reduced from 17.20 mm/y(SMC)to 0.71 mm/y(HPDC),which was revealed to be due to the enhanced connectivity of theβphase acting as corrosion barriers.Meanwhile,the increase in the cooling rate led to a modification of the Zn molar ratio in theβphase,reducing the Volta potential of theβphase from 101.8 m V to 66.9 m V.This reduction in the Volta potential of the main galvanic source also contributed to improved corrosion resistance.The HPDC AZXW9100 alloy produced in this study exhibited the lowest corrosion rate compared to other alloys.These findings suggest that controlling the cooling rate is a promising strategy for enhancing the corrosion resistance of AZXW9100 alloys.