Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulatin...Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.展开更多
Severe acute respiratory syndrome-associated coronavirus 2 is a major global health issue and is driving the need for new therapeutics.The surface spike protein,which plays a central role in virus infection,is current...Severe acute respiratory syndrome-associated coronavirus 2 is a major global health issue and is driving the need for new therapeutics.The surface spike protein,which plays a central role in virus infection,is currently the target for vaccines and neutralizing treatments.The emergence of novel variants with multiple mutations in the spike protein may reduce the effectiveness of neutralizing antibodies by altering the binding activity of the protein with angiotensin-converting enzyme 2(ACE2).To understand the impact of spike protein mutations on the binding interactions required for virus infection and the effectiveness of neutralizing monoclonal antibody(mAb)therapies,the binding activities of the original spike protein receptor binding domain(RBD)sequence and the reported spike protein variants were investigated using surface plasmon resonance.In addition,the interactions of the ACE2 receptor,an antispike mAb(mAb1),a neutralizing mAb(mAb2),the original spike RBD sequence,and mutants D614G,N501Y,N439K,Y453F,and E484K were assessed.Compared to the original RBD,the Y453F and N501Y mutants displayed a significant increase in ACE2 binding affinity,whereas D614G had a substantial reduction in binding affinity.All mAb-RBD mutant proteins displayed a reduction in binding affinities relative to the original RBD,except for the E484K-mAb1 interaction.The potential neutralizing capability of mAb1 and mAb2 was investigated.Accordingly,mAb1 failed to inhibit the ACE2-RBD interaction while mAb2 inhibited the ACE2-RBD interactions for all RBD mutants,except mutant E484K,which only displayed partial blocking.展开更多
In nonequilibrium statistical physics, the entropy production and the irreversibility (nondetailed balance) play very important roles. For the simple case of the Markov chains, it is shown that a stationary Markov cha...In nonequilibrium statistical physics, the entropy production and the irreversibility (nondetailed balance) play very important roles. For the simple case of the Markov chains, it is shown that a stationary Markov chain is reversible iff its entropy production vanishes, and entropy production characterizes how far from reversibility展开更多
文摘Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.
文摘Severe acute respiratory syndrome-associated coronavirus 2 is a major global health issue and is driving the need for new therapeutics.The surface spike protein,which plays a central role in virus infection,is currently the target for vaccines and neutralizing treatments.The emergence of novel variants with multiple mutations in the spike protein may reduce the effectiveness of neutralizing antibodies by altering the binding activity of the protein with angiotensin-converting enzyme 2(ACE2).To understand the impact of spike protein mutations on the binding interactions required for virus infection and the effectiveness of neutralizing monoclonal antibody(mAb)therapies,the binding activities of the original spike protein receptor binding domain(RBD)sequence and the reported spike protein variants were investigated using surface plasmon resonance.In addition,the interactions of the ACE2 receptor,an antispike mAb(mAb1),a neutralizing mAb(mAb2),the original spike RBD sequence,and mutants D614G,N501Y,N439K,Y453F,and E484K were assessed.Compared to the original RBD,the Y453F and N501Y mutants displayed a significant increase in ACE2 binding affinity,whereas D614G had a substantial reduction in binding affinity.All mAb-RBD mutant proteins displayed a reduction in binding affinities relative to the original RBD,except for the E484K-mAb1 interaction.The potential neutralizing capability of mAb1 and mAb2 was investigated.Accordingly,mAb1 failed to inhibit the ACE2-RBD interaction while mAb2 inhibited the ACE2-RBD interactions for all RBD mutants,except mutant E484K,which only displayed partial blocking.
文摘In nonequilibrium statistical physics, the entropy production and the irreversibility (nondetailed balance) play very important roles. For the simple case of the Markov chains, it is shown that a stationary Markov chain is reversible iff its entropy production vanishes, and entropy production characterizes how far from reversibility