As interconnects shrink beyond 90nm node, the presence of etch residues can createhigh via resistance and void nucleation during stress migration (SM) testing. Physical Ar+ preclean is effectivein removing residues, b...As interconnects shrink beyond 90nm node, the presence of etch residues can createhigh via resistance and void nucleation during stress migration (SM) testing. Physical Ar+ preclean is effectivein removing residues, but early SM failures have been seen due to Cu resputter from underlying trenches.Reactive preclean methods show promise in reducing CuOx and cleaning Si, N, F, C,O etch residues inpresence of H+, H* species. In this paper, reactive preclean and PVD PunchThru process (deposit-etch-deposit) is proposed as solution to conventional PVD.The PunchThru process reduces via resistance, improves SM and protects dual-damascene beveland unlanded vias from Cu diffusion by presence of thin Ta deposition step. In addition, the U-shaped interface,which minimizes electron crowding and localized heating effects, increases the mean time to failureby electromigration. Consistent, repeatable blanket film property and good parametric electrical test resultshave proven the production worthiness of this process.展开更多
Extended use of supported Pt catalysts causes thermal migration of Pt particles to form large agglomerates,thus decreasing the catalytic activity.The combination of Pt with Re protects Pt against migration.In addition...Extended use of supported Pt catalysts causes thermal migration of Pt particles to form large agglomerates,thus decreasing the catalytic activity.The combination of Pt with Re protects Pt against migration.In addition,Cl injection into the reactor assists Pt particles redispersion to prolong catalyst life.In this work,a PtRe/H-ZSM-5 catalyst was treated with either HCl or HF to investigate their role in activating or deactivating the catalyst.The conversion exceeded 90% in the whole temperature range with the PtRe/H-ZSM-5(HCl) catalyst,and its activity for the direct isomerization of cyclohexene to methylcyclopentenes(MCPEs) was the lowest but the activity for the hydrogenation of the MCPEs to methylcyclopentane was the highest.The reactivities of MCPEs and cyclohexadienes on the catalysts were similar because both are dehydrogenation reactions.Benzene production was significantly higher on the hydrochlorinated catalyst than on the other catalysts,and its hydrocracking activity was the lowest,which is a good characteristic for processing catalysts where cracking is undesired.展开更多
Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,...Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,ICP,SEM and FT-IR analysis.The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300℃.The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity.The optimum condition of Mn/SZ-S catalyst was investigated at 200℃ and LHSV of 0.02 h^−1 in a time range from 30 to 210 min.It was found that the total conversion decreased from 80.18% to 53.26% at 210 min.The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h.The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials.展开更多
As semiconductor devices shrink and their manufacturing processes advance,accurately measuring in-cell critical dimensions(CD)becomes increasingly crucial.Traditional test element group(TEG)measurements are becoming i...As semiconductor devices shrink and their manufacturing processes advance,accurately measuring in-cell critical dimensions(CD)becomes increasingly crucial.Traditional test element group(TEG)measurements are becoming inadequate for representing the fine,repetitive patterns in cell blocks.Conventional non-destructive metrology technologies like optical critical dimension(OCD)are limited due to their large spot diameter of approximately 25μm,which impedes their efficacy for detailed in-cell structural analysis.Consequently,there is a pressing need for small-spot and non-destructive metrology methods.To address this limitation,we demonstrate a microsphere-assisted hyperspectral imaging(MAHSI)system,specifically designed for small spot optical metrology with super-resolution.Utilizing microsphere-assisted super-resolution imaging,this system achieves an optical resolution of 66 nm within a field of view of 5.6μm×5.6μm.This approach effectively breaks the diffraction limit,significantly enhancing the magnification of the system.The MAHSI system incorporating hyperspectral imaging with a wavelength range of 400–790 nm,enables the capture of the reflection spectrum at each camera pixel.The achieved pixel resolution,which is equivalent to the measuring spot size,is 14.4 nm/pixel and the magnification is 450X.The MAHSI system enables measurement of local uniformity in critical areas like corners and edges of DRAM cell blocks,areas previously challenging to inspect with conventional OCD methods.To our knowledge,this approach represents the first global implementation of microsphere-assisted hyperspectral imaging to address the metrology challenges in complex 3D structures of semiconductor devices.展开更多
文摘As interconnects shrink beyond 90nm node, the presence of etch residues can createhigh via resistance and void nucleation during stress migration (SM) testing. Physical Ar+ preclean is effectivein removing residues, but early SM failures have been seen due to Cu resputter from underlying trenches.Reactive preclean methods show promise in reducing CuOx and cleaning Si, N, F, C,O etch residues inpresence of H+, H* species. In this paper, reactive preclean and PVD PunchThru process (deposit-etch-deposit) is proposed as solution to conventional PVD.The PunchThru process reduces via resistance, improves SM and protects dual-damascene beveland unlanded vias from Cu diffusion by presence of thin Ta deposition step. In addition, the U-shaped interface,which minimizes electron crowding and localized heating effects, increases the mean time to failureby electromigration. Consistent, repeatable blanket film property and good parametric electrical test resultshave proven the production worthiness of this process.
文摘Extended use of supported Pt catalysts causes thermal migration of Pt particles to form large agglomerates,thus decreasing the catalytic activity.The combination of Pt with Re protects Pt against migration.In addition,Cl injection into the reactor assists Pt particles redispersion to prolong catalyst life.In this work,a PtRe/H-ZSM-5 catalyst was treated with either HCl or HF to investigate their role in activating or deactivating the catalyst.The conversion exceeded 90% in the whole temperature range with the PtRe/H-ZSM-5(HCl) catalyst,and its activity for the direct isomerization of cyclohexene to methylcyclopentenes(MCPEs) was the lowest but the activity for the hydrogenation of the MCPEs to methylcyclopentane was the highest.The reactivities of MCPEs and cyclohexadienes on the catalysts were similar because both are dehydrogenation reactions.Benzene production was significantly higher on the hydrochlorinated catalyst than on the other catalysts,and its hydrocracking activity was the lowest,which is a good characteristic for processing catalysts where cracking is undesired.
文摘Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,ICP,SEM and FT-IR analysis.The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300℃.The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity.The optimum condition of Mn/SZ-S catalyst was investigated at 200℃ and LHSV of 0.02 h^−1 in a time range from 30 to 210 min.It was found that the total conversion decreased from 80.18% to 53.26% at 210 min.The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h.The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials.
文摘随着金属导线线宽的不断缩小,在90nm 技术以下,刻蚀残留物的存在会在应力迁移测试中形成高通孔电阻和空洞成核现象。物理氩离子预清洗是一种去除残留物的有效方法。但在应力迁移测试中发现,底部沟槽铜的二次溅射会导致器件的早期失效。反应性预清洗方法由于含有H +、H 类粒子而在减少C uO x 和清洗Si,N ,F,C ,O ,等蚀刻残留物时表现出其优越性。提出了针对传统PV D 工艺的反应性预清洗及PV D 击穿(沉积,刻蚀,沉积)工艺的解决方案。阻挡层击穿工艺减少了通孔电阻,提高了应力迁移性能,并通过薄钽沉积工序防止了铜的扩散从而保护了双嵌入斜面和错位通孔。此外,使电子阻塞和局部加热效应最小化的U 型界面,提高了电子迁移失效的平均时间,一致的、可重复的覆盖膜特性和良好的电参量测试结果已经证实了这种工艺的生产价值。
文摘As semiconductor devices shrink and their manufacturing processes advance,accurately measuring in-cell critical dimensions(CD)becomes increasingly crucial.Traditional test element group(TEG)measurements are becoming inadequate for representing the fine,repetitive patterns in cell blocks.Conventional non-destructive metrology technologies like optical critical dimension(OCD)are limited due to their large spot diameter of approximately 25μm,which impedes their efficacy for detailed in-cell structural analysis.Consequently,there is a pressing need for small-spot and non-destructive metrology methods.To address this limitation,we demonstrate a microsphere-assisted hyperspectral imaging(MAHSI)system,specifically designed for small spot optical metrology with super-resolution.Utilizing microsphere-assisted super-resolution imaging,this system achieves an optical resolution of 66 nm within a field of view of 5.6μm×5.6μm.This approach effectively breaks the diffraction limit,significantly enhancing the magnification of the system.The MAHSI system incorporating hyperspectral imaging with a wavelength range of 400–790 nm,enables the capture of the reflection spectrum at each camera pixel.The achieved pixel resolution,which is equivalent to the measuring spot size,is 14.4 nm/pixel and the magnification is 450X.The MAHSI system enables measurement of local uniformity in critical areas like corners and edges of DRAM cell blocks,areas previously challenging to inspect with conventional OCD methods.To our knowledge,this approach represents the first global implementation of microsphere-assisted hyperspectral imaging to address the metrology challenges in complex 3D structures of semiconductor devices.