The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in ...The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in glucose increases during glucose tolerance tests (GTT) and suggest potential mechanisms, including improved insulin sensitivity and reduced inflammation. Hematological analysis indicates no adverse effects of electrotherapy on healthy or diabetic mice. This study supports the potential of high-voltage low-frequency electrotherapy as an adjunctive treatment for type 2 diabetes, warranting further research into its mechanisms and long-term effects.展开更多
This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43)...This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43), and Influenza A virus (A H1N1). Using the HealectricsTM device (model S02), which operates by applying high-voltage direct current (30 - 50 kV) with a polarity change frequency of ~0.2 Hz, we investigated the impact on viral infectivity and host cell viability. Virus cultures were exposed to electric fields during different stages: virion adsorption (0 - 1 hour), intracellular replication (1 - 8 hours), and both stages. Viral infectivity was assessed through titration, and cytotoxic effects were evaluated using MTT assays. Electric field exposure significantly reduced viral infectivity, particularly during the combined sorption and replication stages, with up to a 90% decrease in viral activity. Among the viruses tested, HCoV OC43 showed the least sensitivity, with a reduction in viral activity by a factor of 5. Comparisons revealed statistically significant reductions for influenza and herpes viruses, and a trend towards significance for HCoV OC43. The electric field treatment did not significantly affect the viability of Vero and MDCK cells, indicating the method’s safety. Our findings suggest that high-voltage low-frequency electric fields can effectively reduce viral infectivity and may serve as a potential therapeutic and preventive measure against a wide range of membrane-bound viruses, including SARS-CoV-2.展开更多
Carbon forms a variety of compounds with single, double, triple and the intermediate resonance bonds with atoms of its own or other kinds. This paper is concerned with graphite, a very useful material, which is a stac...Carbon forms a variety of compounds with single, double, triple and the intermediate resonance bonds with atoms of its own or other kinds. This paper is concerned with graphite, a very useful material, which is a stack of electrically conducting graphene layers held together by weak van der Waals (vdW) bonds. It crystallizes in hexagonal and rhombohedral forms, in which the hexagon inter-planar bond distance is 0.34 nm. Here a new and simple approach accounts for this bond length and shows the coulombic nature of the vdW bond.展开更多
This paper addresses a dynamic portfolio investment problem. It discusses how we can dynamically choose candidate assets, achieve the possible maximum revenue and reduce the risk to the minimum level. The paper genera...This paper addresses a dynamic portfolio investment problem. It discusses how we can dynamically choose candidate assets, achieve the possible maximum revenue and reduce the risk to the minimum level. The paper generalizes Markowitz’s portfolio selection theory and Sharpe’s rule for investment decision. An analytical solution is presented to show how an institu- tional or individual investor can combine Markowitz’s portfolio selection theory, generalized Sharpe’s rule and Value-at-Risk (VaR) to find candidate assets and optimal level of position sizes for investment (dis-investment). The result shows that the gen- eralized Markowitz’s portfolio selection theory and generalized Sharpe’s rule improve decision making for investment.展开更多
Results of geochemical researches in the Western Caucasus (South Russia) during the regional earthquakes are described. Monthly soil Rn data do not correlate with earthquakes. Daily concentrations of Rn in galleries, ...Results of geochemical researches in the Western Caucasus (South Russia) during the regional earthquakes are described. Monthly soil Rn data do not correlate with earthquakes. Daily concentrations of Rn in galleries, caves, mud volcanoes and faults increase before earthquakes and decrease after them. “Splashes” about 9 days before earthquakes in the hourly Rn data are found out. Similar “splashes” were observed in the data of a gamma background in galleries and the Earth’s surface. Concentration of CO2 in underground water was increasing more often after an earthquake. Concentration of Rn in the water was increasing before earthpquake. Strong sine wave daily variations of the soil H2 decreased during earthquakes. Concentration of some chemical elements in underground waters changed similarly Rn data before earthquakes.展开更多
The methods and criteria of the physical theory of strength are used. The initial physical and mechanical parameters of the strength of steel 45 were determined analytically. Strength, fatigue and damage to steel were...The methods and criteria of the physical theory of strength are used. The initial physical and mechanical parameters of the strength of steel 45 were determined analytically. Strength, fatigue and damage to steel were calculated for non-stationary mechanical and various thermal loads. The ratio between the physical and generally accepted mechanical parameters of the material strength is determined analytically. The result of the calculation of the new characteristics of the strength of the damaged material is given. The method takes into account plastic deformation, an arbitrary form of stress cycle, temperature mode. Additional physical criteria for evaluating the strength properties are proposed. We use our own calculation programs, which allow us to take into account the changed characteristics of the damaged material for various stress functions. The physical method allows you to analyze and quickly process the rheological data of sensors that control the parameters of the material under load. A method for rapid analysis and comparison of the results of indentation into the material in accordance with ISO 14577 using various indenters is proposed. Physical parameters of the material and new theoretical methods of calculation can be used to assess the properties of materials, monitor the condition and predict the strength and durability of the material of machines during operation.展开更多
Light can create itself. Experiments have been carried out and seemingly prove this hypothesis, though the experimenters themselves did not see this phenomenon in front of them. This discussion gives the proof and the...Light can create itself. Experiments have been carried out and seemingly prove this hypothesis, though the experimenters themselves did not see this phenomenon in front of them. This discussion gives the proof and the implications.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
Understanding that the magnetic phenomenon is both a particle, khumalon, that organizes itself into a wave formation to travel through a medium, this paper shows proof of this in detail. It can only be doing this beca...Understanding that the magnetic phenomenon is both a particle, khumalon, that organizes itself into a wave formation to travel through a medium, this paper shows proof of this in detail. It can only be doing this because it is traveling through some medium. This paper is about observing relationships that are a result of different polarized magnetic phenomenon forced into relationships. The magnet shows it does not behave differently from other particles;when they have relationships with their “anti” particle, annihilation takes place. Two magnets will always be like a collider, but because the magnetic phenomenon is already unstable and of low energy allows us to see things otherwise difficult with particles of higher energy. Isaac Newton is truly needed in explaining this phenomenon. The magnetic phenomenon adheres to the first two laws of everything. All data can be found on figshare.com, to share.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a mat...Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a material.Model of the physical process,thermomechanical potential,function of the state of the kinetic macroindentation process.Method for determining the physical function and unit of measurement of the kinetic macrohardness of a material.The ratio of the values of the empirical(standard)and physical macrohardness of the material.Physical reason for the appearance of the size effect in empirical indentation methods.The principle of determining the standard value of physical macrohardness.展开更多
文摘The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in glucose increases during glucose tolerance tests (GTT) and suggest potential mechanisms, including improved insulin sensitivity and reduced inflammation. Hematological analysis indicates no adverse effects of electrotherapy on healthy or diabetic mice. This study supports the potential of high-voltage low-frequency electrotherapy as an adjunctive treatment for type 2 diabetes, warranting further research into its mechanisms and long-term effects.
文摘This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43), and Influenza A virus (A H1N1). Using the HealectricsTM device (model S02), which operates by applying high-voltage direct current (30 - 50 kV) with a polarity change frequency of ~0.2 Hz, we investigated the impact on viral infectivity and host cell viability. Virus cultures were exposed to electric fields during different stages: virion adsorption (0 - 1 hour), intracellular replication (1 - 8 hours), and both stages. Viral infectivity was assessed through titration, and cytotoxic effects were evaluated using MTT assays. Electric field exposure significantly reduced viral infectivity, particularly during the combined sorption and replication stages, with up to a 90% decrease in viral activity. Among the viruses tested, HCoV OC43 showed the least sensitivity, with a reduction in viral activity by a factor of 5. Comparisons revealed statistically significant reductions for influenza and herpes viruses, and a trend towards significance for HCoV OC43. The electric field treatment did not significantly affect the viability of Vero and MDCK cells, indicating the method’s safety. Our findings suggest that high-voltage low-frequency electric fields can effectively reduce viral infectivity and may serve as a potential therapeutic and preventive measure against a wide range of membrane-bound viruses, including SARS-CoV-2.
文摘Carbon forms a variety of compounds with single, double, triple and the intermediate resonance bonds with atoms of its own or other kinds. This paper is concerned with graphite, a very useful material, which is a stack of electrically conducting graphene layers held together by weak van der Waals (vdW) bonds. It crystallizes in hexagonal and rhombohedral forms, in which the hexagon inter-planar bond distance is 0.34 nm. Here a new and simple approach accounts for this bond length and shows the coulombic nature of the vdW bond.
文摘This paper addresses a dynamic portfolio investment problem. It discusses how we can dynamically choose candidate assets, achieve the possible maximum revenue and reduce the risk to the minimum level. The paper generalizes Markowitz’s portfolio selection theory and Sharpe’s rule for investment decision. An analytical solution is presented to show how an institu- tional or individual investor can combine Markowitz’s portfolio selection theory, generalized Sharpe’s rule and Value-at-Risk (VaR) to find candidate assets and optimal level of position sizes for investment (dis-investment). The result shows that the gen- eralized Markowitz’s portfolio selection theory and generalized Sharpe’s rule improve decision making for investment.
文摘Results of geochemical researches in the Western Caucasus (South Russia) during the regional earthquakes are described. Monthly soil Rn data do not correlate with earthquakes. Daily concentrations of Rn in galleries, caves, mud volcanoes and faults increase before earthquakes and decrease after them. “Splashes” about 9 days before earthquakes in the hourly Rn data are found out. Similar “splashes” were observed in the data of a gamma background in galleries and the Earth’s surface. Concentration of CO2 in underground water was increasing more often after an earthquake. Concentration of Rn in the water was increasing before earthpquake. Strong sine wave daily variations of the soil H2 decreased during earthquakes. Concentration of some chemical elements in underground waters changed similarly Rn data before earthquakes.
文摘The methods and criteria of the physical theory of strength are used. The initial physical and mechanical parameters of the strength of steel 45 were determined analytically. Strength, fatigue and damage to steel were calculated for non-stationary mechanical and various thermal loads. The ratio between the physical and generally accepted mechanical parameters of the material strength is determined analytically. The result of the calculation of the new characteristics of the strength of the damaged material is given. The method takes into account plastic deformation, an arbitrary form of stress cycle, temperature mode. Additional physical criteria for evaluating the strength properties are proposed. We use our own calculation programs, which allow us to take into account the changed characteristics of the damaged material for various stress functions. The physical method allows you to analyze and quickly process the rheological data of sensors that control the parameters of the material under load. A method for rapid analysis and comparison of the results of indentation into the material in accordance with ISO 14577 using various indenters is proposed. Physical parameters of the material and new theoretical methods of calculation can be used to assess the properties of materials, monitor the condition and predict the strength and durability of the material of machines during operation.
文摘Light can create itself. Experiments have been carried out and seemingly prove this hypothesis, though the experimenters themselves did not see this phenomenon in front of them. This discussion gives the proof and the implications.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘Understanding that the magnetic phenomenon is both a particle, khumalon, that organizes itself into a wave formation to travel through a medium, this paper shows proof of this in detail. It can only be doing this because it is traveling through some medium. This paper is about observing relationships that are a result of different polarized magnetic phenomenon forced into relationships. The magnet shows it does not behave differently from other particles;when they have relationships with their “anti” particle, annihilation takes place. Two magnets will always be like a collider, but because the magnetic phenomenon is already unstable and of low energy allows us to see things otherwise difficult with particles of higher energy. Isaac Newton is truly needed in explaining this phenomenon. The magnetic phenomenon adheres to the first two laws of everything. All data can be found on figshare.com, to share.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.
文摘Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a material.Model of the physical process,thermomechanical potential,function of the state of the kinetic macroindentation process.Method for determining the physical function and unit of measurement of the kinetic macrohardness of a material.The ratio of the values of the empirical(standard)and physical macrohardness of the material.Physical reason for the appearance of the size effect in empirical indentation methods.The principle of determining the standard value of physical macrohardness.