To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Amid ASEAN’s accelerating energy transition,the Advanced Energy Storage Industry Technology and Innovation Alliance(AESIA)drives cross-border collaboration to address grid fragility,aging infrastructure,and investmen...Amid ASEAN’s accelerating energy transition,the Advanced Energy Storage Industry Technology and Innovation Alliance(AESIA)drives cross-border collaboration to address grid fragility,aging infrastructure,and investment gaps.By leveraging China’s tropical-tested solutions(e.g.,grid-stabilizing storage systems)and aligning with ASEAN’s 2030 renewable targets,AESIA focuses on three pillars:adaptive technology(localized storage for solar/wind integration),regional grid interconnection(via the ASEAN Power Grid to share renewable surpluses),and blended finance(mitigating risks for long-duration storage projects).Key initiatives include standardized tropical storage protocols,training ASEAN engineers in microgrid management,and pilot cross-border projects reducing curtailment.By 2030,AESIA aims to scale affordable storage and integrate emerging tech,balancing energy security with decarbonization.This model bridges technical expertise with ASEAN’s dynamic needs,fostering a resilient,inclusive energy future.展开更多
The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern ...The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern South China Sea near a coastal nuclear power plant to evaluate the applicability of heat transfer coefficient calculation algorithms commonly used in marine thermal discharge engineering in China.The results show that the Regulation for Hydraulic and Thermal Model in Cooling Water Projects(SL 160-2012)is not applicable in calculating the heat transfer coefficient in offshore areas.SL 160-2012 significantly overestimates the heat loss at the sea surface.However,Code for Design of Cooling for Industrial Recirculating Water(GB/T 50102-2014)performs well,and its estimation coefficient is roughly consistent with the estimations of the COARE 3.6 bulk algorithm,which is extensively used in physical oceanography for calculating air-sea heat fluxes,and the Gunneberg formula.In a 3-day observation,the average heat transfer coefficients estimated using these three algorithms were 50.4,48.5,and 48.8 W m^(-2)℃^(-1),respectively,with a deviation of less than 4% among them,whereas that estimated using SL 160-2012 was as high as 176.3 W m^(-2)℃^(-1).The abnormally large value of SL 160-2012 is due to its additional cooling term,which is artificially increased by 100 times because of the incorrect unit conversion used when developing the regulation.If this error is corrected,the value will decrease to 50.5 W m^(-2)℃^(-1),which is very close to the estimation of GB/T 50102-2014.展开更多
The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CF...The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CFD(Computational Fluid Dynamics)model to simulate the hydrodynamic forces of trash intercepting net under the action of regular waves.The porous media model is used to calculate the hydrodynamic forces,and the maximum mooring load is also evaluated.The simplified calculation method considering the different curved shape based on the flat nets are proposed,and the influences of wave parameters,solidity,and curved shape are investigated.The results indicate that under the regular wave conditions,as the solidity increases,the phenomenon of secondary wave peaks becomes more pronounced.The horizontal wave force reduction coefficient follows a three-piecewise linear relationship with the non-dimensional deformation level of curved shape.The trash intercepting net exhibits more potent scattering effects on short-wave conditions,displaying significant non-linear characteristics.The deformation level of the trash intercepting net is a significant factor influencing the mooring load.展开更多
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for vol...Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.展开更多
With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation...With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation of power systems.This paper presents an early warning method for REPREs based on long short-term memory(LSTM)network and fuzzy logic.First,the warning levels of REPREs are defined by assessing the control costs of various power control measures.Then,the next 4-h power support capability of external grid is estimated by a tie line power predictionmodel,which is constructed based on the LSTMnetwork.Finally,considering the risk attitudes of dispatchers,fuzzy rules are employed to address the boundary value attribution of the early warning interval,improving the rationality of power ramp event early warning.Simulation results demonstrate that the proposed method can generate reasonable early warning levels for REPREs,guiding decision-making for control strategy.展开更多
The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fi...The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea...The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants.展开更多
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust a...Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust adjustability.However,the complex multiphase combustion process in the combustor significantly affects engine performance.In this study,a detailed model for aluminum particle combustion in water vapor is developed and validated via literature data as well as the ground direct-connected test we conducted.Thereafter,the numerical study on the multiphase combustion process inside the aluminum-based PFWRE combustor is carried out within the Euler–Lagrange framework using the developed model.Results show that a reverse rotating vortex pair before the primary water injection causes particles to flow back towards the combustor head and leads to product deposition.Aluminum particles external to the powder jet have shorter preheating time than internal particles and burn out in advance.The analysis of the particle combustion process indicates that the flame structure inside the combustor consists of the particle preheating zone,the surface combustion heat release zone,the gas-phase combustion heat release zone,and the post-flame zone.In the present configuration,as the particle size increases from 10μm to 20μm,the preheating zone length increases from 35 mm to 85 mm.Meanwhile,heat release from gas-phase combustion decreases,and the average temperature of the combustor head first increases and then decreases.This study not only provides insight into the multiphase combustion characteristics of the aluminum-based PFWRE combustor but also offers guidance for the design of the combustion organization schemes and engine structure optimization.展开更多
Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_...Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_(5.7)PS_(4.7)Cl_(1.3)(BN@LPSC1.3)sulfide SSE,which exhibits reduced H_(2)S emission and improved ionic conductivity retention after relative humidity 1.2%-1.5%ambient condition exposure.Furthermore,BN can partially react with lithium metal to create stable Li_(3)N,resulting in BN@LPSC1.3 showing reduced reactivity against lithium metal and a higher critical current density of 2.2mA/cm^(2).The Li/BN@LPSC/Li symmetrical battery also shows considerably greater stability for>2000 h at a current density of 0.1mA/cm^(2).Despite the high cathode mass loading of 13.38mg/cm^(2),the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/BN@LPSC1.3/Li all-solidstate lithium metal battery achieves 84.34%capacity retention even after 500 cycles at 0.1 C and room temperature(25℃).展开更多
Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction poten...Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.展开更多
The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natura...The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natural adversarial examples has posed significant challenges, as traditional defense methods against adversarial attacks have proven to be largely ineffective against these natural adversarial examples. This paper explores defenses against these natural adversarial examples from three perspectives: adversarial examples, model architecture, and dataset. First, it employs Class Activation Mapping (CAM) to visualize how models classify natural adversarial examples, identifying several typical attack patterns. Next, various common CNN models are analyzed to evaluate their susceptibility to these attacks, revealing that different architectures exhibit varying defensive capabilities. The study finds that as the depth of a network increases, its defenses against natural adversarial examples strengthen. Lastly, Finally, the impact of dataset class distribution on the defense capability of models is examined, focusing on two aspects: the number of classes in the training set and the number of predicted classes. This study investigates how these factors influence the model’s ability to defend against natural adversarial examples. Results indicate that reducing the number of training classes enhances the model’s defense against natural adversarial examples. Additionally, under a fixed number of training classes, some CNN models show an optimal range of predicted classes for achieving the best defense performance against these adversarial examples.展开更多
Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of t...Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of these f-block elements.In this study,we introduce 3,6-di-2-pyridyl-1,2,4,5-tetrazine(L1),whose hydrolysis product of pyridine-2-carbox-aldehyde(pyridine-2-carbonyl)-hydrazone(L2)can fractionally crystallize U(Ⅵ)ions over Ln(Ⅲ)cations with high selectivity and efficiency.Through hydrolysis-induced C–N bond cleavage,L2 acts as a tetradentate ligand,coordinating with two UO_(2)^(2+) ions in a planar arrangement to form a zerodimensional cluster,[(UO_(2))2(μ_(3)-O)(L2)(CH_(3)COO)]·DMF(U-L2),while lanthanide ions(Ln=La,Pr,Nd,Sm,Eu,Gd,Tb,Yb,and Lu)remain in solution due to their inability to achieve similar coordination.This selective crystallization strategy yields exceptional separation factors(SFs)between U(Ⅵ)and Ln(Ⅲ),with a value of 756276 between U(Ⅵ)and Sm(Ⅲ),the highest reported to date.Furthermore,this fractional crystallization separation process can be achieved under mild ambient conditions with high SFs,enabling the development of a rapid,safe and energy-efficient strategy for once-through separation of high oxidation state actinides from lanthanides.展开更多
To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy stora...To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.展开更多
The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In t...The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In this work,we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst(SAC)comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon(Co-N/MPC),forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity.The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation,significantly boosting the intrinsic ORR-OER duplex activity.Under illumination,g-C_(3)N_(4)@Co-N/MPC exhibits an outstanding ORR half-wave potential(E1/2)of 0.841 V(vs.RHE)in 0.1 mol L^(–1)KOH and a low OER overpotential of 497.4 mV(vs.RHE)at 10 mA cm^(–2)in 1 mol L^(–1)KOH.Notably,the catalyst achieves an exceptional peak power density of 850.7 mW cm^(–2)in ZABs and of 411 mW cm^(–2)even in H_(2)-air fuel cell.In addition,g-C_(3)N_(4)@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h.The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics,and the mass transport owing to hierarchical mesoporous structure of Co-N-C,thereby reducing the overpotential and enhancing the overall energy conversion efficiency.This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts,paving the way for high-performance photo-enhanced energy storage and conversion systems.展开更多
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w...Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.展开更多
This study devoted to optimize the laser powder bed fusion(LPBF)parameters for the preparation of Zr-2.5Nb alloys,and was focused on power of incident laser beam and its scanning speed.The microstructure,mechanical an...This study devoted to optimize the laser powder bed fusion(LPBF)parameters for the preparation of Zr-2.5Nb alloys,and was focused on power of incident laser beam and its scanning speed.The microstructure,mechanical and corrosion properties of samples prepared at different laser powers were investigated.The results show that high quality samples were obtained with the relative density over 99%,ultimate tensile strength of 980 MPa,and the elongation at fracture of 14.18%.At a scanning speed of 1400 mm/s,with increasing laser power from 120 to 180 W,two transformation processes:α'martensite coarsening and transition from an acicular into a zigzag structure(β→α'/α→α+β)occurred.Densification andα'martensite transition improved ductility and corrosion resistance at optimal value of the laser power while lower or higher laser power resulted in decreasing the ductility and corrosion resistance because of unfused particles and pores.Increasingβ-Zr amount and size decreased the tensile strength due to the dislocation movement.Passive films,which were spontaneously formed at different laser powers,possessed an optimum corrosion resistance at the laser power of 160 W.展开更多
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
文摘Amid ASEAN’s accelerating energy transition,the Advanced Energy Storage Industry Technology and Innovation Alliance(AESIA)drives cross-border collaboration to address grid fragility,aging infrastructure,and investment gaps.By leveraging China’s tropical-tested solutions(e.g.,grid-stabilizing storage systems)and aligning with ASEAN’s 2030 renewable targets,AESIA focuses on three pillars:adaptive technology(localized storage for solar/wind integration),regional grid interconnection(via the ASEAN Power Grid to share renewable surpluses),and blended finance(mitigating risks for long-duration storage projects).Key initiatives include standardized tropical storage protocols,training ASEAN engineers in microgrid management,and pilot cross-border projects reducing curtailment.By 2030,AESIA aims to scale affordable storage and integrate emerging tech,balancing energy security with decarbonization.This model bridges technical expertise with ASEAN’s dynamic needs,fostering a resilient,inclusive energy future.
基金supported by the Laoshan Laboratory(No.LSKJ202201600)the National Natural Science Foundation of China(No.41821004)。
文摘The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern South China Sea near a coastal nuclear power plant to evaluate the applicability of heat transfer coefficient calculation algorithms commonly used in marine thermal discharge engineering in China.The results show that the Regulation for Hydraulic and Thermal Model in Cooling Water Projects(SL 160-2012)is not applicable in calculating the heat transfer coefficient in offshore areas.SL 160-2012 significantly overestimates the heat loss at the sea surface.However,Code for Design of Cooling for Industrial Recirculating Water(GB/T 50102-2014)performs well,and its estimation coefficient is roughly consistent with the estimations of the COARE 3.6 bulk algorithm,which is extensively used in physical oceanography for calculating air-sea heat fluxes,and the Gunneberg formula.In a 3-day observation,the average heat transfer coefficients estimated using these three algorithms were 50.4,48.5,and 48.8 W m^(-2)℃^(-1),respectively,with a deviation of less than 4% among them,whereas that estimated using SL 160-2012 was as high as 176.3 W m^(-2)℃^(-1).The abnormally large value of SL 160-2012 is due to its additional cooling term,which is artificially increased by 100 times because of the incorrect unit conversion used when developing the regulation.If this error is corrected,the value will decrease to 50.5 W m^(-2)℃^(-1),which is very close to the estimation of GB/T 50102-2014.
基金financially supported by National Natural Science Foundation of China(Grant No.52201311)Fundamental Research Funds for the Central Universities.
文摘The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CFD(Computational Fluid Dynamics)model to simulate the hydrodynamic forces of trash intercepting net under the action of regular waves.The porous media model is used to calculate the hydrodynamic forces,and the maximum mooring load is also evaluated.The simplified calculation method considering the different curved shape based on the flat nets are proposed,and the influences of wave parameters,solidity,and curved shape are investigated.The results indicate that under the regular wave conditions,as the solidity increases,the phenomenon of secondary wave peaks becomes more pronounced.The horizontal wave force reduction coefficient follows a three-piecewise linear relationship with the non-dimensional deformation level of curved shape.The trash intercepting net exhibits more potent scattering effects on short-wave conditions,displaying significant non-linear characteristics.The deformation level of the trash intercepting net is a significant factor influencing the mooring load.
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under Grant 52140023000T.
文摘Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.
基金funded by State Grid Shandong Electric Power Company Technology Project(520626220110).
文摘With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation of power systems.This paper presents an early warning method for REPREs based on long short-term memory(LSTM)network and fuzzy logic.First,the warning levels of REPREs are defined by assessing the control costs of various power control measures.Then,the next 4-h power support capability of external grid is estimated by a tie line power predictionmodel,which is constructed based on the LSTMnetwork.Finally,considering the risk attitudes of dispatchers,fuzzy rules are employed to address the boundary value attribution of the early warning interval,improving the rationality of power ramp event early warning.Simulation results demonstrate that the proposed method can generate reasonable early warning levels for REPREs,guiding decision-making for control strategy.
基金supported by the National Key R&D Program of China 2022YFB2404300the National Natural Science Foundation of China U22B2069the China Postdoctoral Science Foundation 2024M761006。
文摘The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金National Natural Science Foundation of China(12135008,12132005)。
文摘The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金supported by the National Natural Science Foundation of China(No.22305053).
文摘Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust adjustability.However,the complex multiphase combustion process in the combustor significantly affects engine performance.In this study,a detailed model for aluminum particle combustion in water vapor is developed and validated via literature data as well as the ground direct-connected test we conducted.Thereafter,the numerical study on the multiphase combustion process inside the aluminum-based PFWRE combustor is carried out within the Euler–Lagrange framework using the developed model.Results show that a reverse rotating vortex pair before the primary water injection causes particles to flow back towards the combustor head and leads to product deposition.Aluminum particles external to the powder jet have shorter preheating time than internal particles and burn out in advance.The analysis of the particle combustion process indicates that the flame structure inside the combustor consists of the particle preheating zone,the surface combustion heat release zone,the gas-phase combustion heat release zone,and the post-flame zone.In the present configuration,as the particle size increases from 10μm to 20μm,the preheating zone length increases from 35 mm to 85 mm.Meanwhile,heat release from gas-phase combustion decreases,and the average temperature of the combustor head first increases and then decreases.This study not only provides insight into the multiphase combustion characteristics of the aluminum-based PFWRE combustor but also offers guidance for the design of the combustion organization schemes and engine structure optimization.
基金financial support from the Science and Technology Project of Shenzhen(Nos.JCYJ20210324094206019 and JCYJ20210324094000001).
文摘Weak water stability and lithium reactivity are two major stability issues of sulfide solid-state electrolytes(SSEs)for all-solid-state lithium metal batteries.Here,we report on nano-sized boron nitride(BN)-coated Li_(5.7)PS_(4.7)Cl_(1.3)(BN@LPSC1.3)sulfide SSE,which exhibits reduced H_(2)S emission and improved ionic conductivity retention after relative humidity 1.2%-1.5%ambient condition exposure.Furthermore,BN can partially react with lithium metal to create stable Li_(3)N,resulting in BN@LPSC1.3 showing reduced reactivity against lithium metal and a higher critical current density of 2.2mA/cm^(2).The Li/BN@LPSC/Li symmetrical battery also shows considerably greater stability for>2000 h at a current density of 0.1mA/cm^(2).Despite the high cathode mass loading of 13.38mg/cm^(2),the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/BN@LPSC1.3/Li all-solidstate lithium metal battery achieves 84.34%capacity retention even after 500 cycles at 0.1 C and room temperature(25℃).
基金supported by the National Natural Science Foundation of China(No.22309056)the National Key R&.D Program of China(No.2022YFB2404800)+4 种基金the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee(No.JCYJ20210324141613032)the Knowledge Innovation Project of Wuhan City(No.2022010801010303)the City University of Hong Kong Strategic Research Grant(SRG),Hong Kong,China(No.7005505)the City University of Hong Kong Donation Research Grant,Hong Kong,China(No.DON-RMG 9229021)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.
文摘The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natural adversarial examples has posed significant challenges, as traditional defense methods against adversarial attacks have proven to be largely ineffective against these natural adversarial examples. This paper explores defenses against these natural adversarial examples from three perspectives: adversarial examples, model architecture, and dataset. First, it employs Class Activation Mapping (CAM) to visualize how models classify natural adversarial examples, identifying several typical attack patterns. Next, various common CNN models are analyzed to evaluate their susceptibility to these attacks, revealing that different architectures exhibit varying defensive capabilities. The study finds that as the depth of a network increases, its defenses against natural adversarial examples strengthen. Lastly, Finally, the impact of dataset class distribution on the defense capability of models is examined, focusing on two aspects: the number of classes in the training set and the number of predicted classes. This study investigates how these factors influence the model’s ability to defend against natural adversarial examples. Results indicate that reducing the number of training classes enhances the model’s defense against natural adversarial examples. Additionally, under a fixed number of training classes, some CNN models show an optimal range of predicted classes for achieving the best defense performance against these adversarial examples.
基金supported by the National Natural Science Foundation of China(U22B20139,22322609,22076152,and 22476158).
文摘Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of these f-block elements.In this study,we introduce 3,6-di-2-pyridyl-1,2,4,5-tetrazine(L1),whose hydrolysis product of pyridine-2-carbox-aldehyde(pyridine-2-carbonyl)-hydrazone(L2)can fractionally crystallize U(Ⅵ)ions over Ln(Ⅲ)cations with high selectivity and efficiency.Through hydrolysis-induced C–N bond cleavage,L2 acts as a tetradentate ligand,coordinating with two UO_(2)^(2+) ions in a planar arrangement to form a zerodimensional cluster,[(UO_(2))2(μ_(3)-O)(L2)(CH_(3)COO)]·DMF(U-L2),while lanthanide ions(Ln=La,Pr,Nd,Sm,Eu,Gd,Tb,Yb,and Lu)remain in solution due to their inability to achieve similar coordination.This selective crystallization strategy yields exceptional separation factors(SFs)between U(Ⅵ)and Ln(Ⅲ),with a value of 756276 between U(Ⅵ)and Sm(Ⅲ),the highest reported to date.Furthermore,this fractional crystallization separation process can be achieved under mild ambient conditions with high SFs,enabling the development of a rapid,safe and energy-efficient strategy for once-through separation of high oxidation state actinides from lanthanides.
基金This study was supported by State Grid Corporation headquarters technology project(4000-202399368A-2-2-ZB).
文摘To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In this work,we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst(SAC)comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon(Co-N/MPC),forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity.The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation,significantly boosting the intrinsic ORR-OER duplex activity.Under illumination,g-C_(3)N_(4)@Co-N/MPC exhibits an outstanding ORR half-wave potential(E1/2)of 0.841 V(vs.RHE)in 0.1 mol L^(–1)KOH and a low OER overpotential of 497.4 mV(vs.RHE)at 10 mA cm^(–2)in 1 mol L^(–1)KOH.Notably,the catalyst achieves an exceptional peak power density of 850.7 mW cm^(–2)in ZABs and of 411 mW cm^(–2)even in H_(2)-air fuel cell.In addition,g-C_(3)N_(4)@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h.The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics,and the mass transport owing to hierarchical mesoporous structure of Co-N-C,thereby reducing the overpotential and enhancing the overall energy conversion efficiency.This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts,paving the way for high-performance photo-enhanced energy storage and conversion systems.
基金This work is supported by the National Key Research and Development Program of China(No.2023YFB4203000)the National Natural Science Foundation of China(No.U22A20178)
文摘Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.
基金supported by the National Key Area Research and Development Program of China(No.2023YFB4606702)Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120066)+2 种基金Dongguan Key Area Research and Development Program,China(No.20221200300182)the National Natural Science Foundation of China(No.52271032)Key Research and Development Program of Jiangsu Province,China(No.K22251901).
文摘This study devoted to optimize the laser powder bed fusion(LPBF)parameters for the preparation of Zr-2.5Nb alloys,and was focused on power of incident laser beam and its scanning speed.The microstructure,mechanical and corrosion properties of samples prepared at different laser powers were investigated.The results show that high quality samples were obtained with the relative density over 99%,ultimate tensile strength of 980 MPa,and the elongation at fracture of 14.18%.At a scanning speed of 1400 mm/s,with increasing laser power from 120 to 180 W,two transformation processes:α'martensite coarsening and transition from an acicular into a zigzag structure(β→α'/α→α+β)occurred.Densification andα'martensite transition improved ductility and corrosion resistance at optimal value of the laser power while lower or higher laser power resulted in decreasing the ductility and corrosion resistance because of unfused particles and pores.Increasingβ-Zr amount and size decreased the tensile strength due to the dislocation movement.Passive films,which were spontaneously formed at different laser powers,possessed an optimum corrosion resistance at the laser power of 160 W.