Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen...Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.展开更多
The penetration rate of new wind and photovoltaic energy in the power system has increased significantly,and the dramatic fluctuation of the net load of the grid has led to a severe lack of flexibility in the regional...The penetration rate of new wind and photovoltaic energy in the power system has increased significantly,and the dramatic fluctuation of the net load of the grid has led to a severe lack of flexibility in the regional grid.This paper proposes a hierarchical optimal dispatch strategy for a high proportion of new energy power systems that considers the balanced response of grid flexibility.Firstly,various flexibility resource regulation capabilities on the source-load side are analyzed,and then flexibility demand and flexibility response are matched,and flexibility demand response assessment is proposed;then,a hierarchical optimal dispatch model of the grid taking flexibility adjustment capability into account is established,and the upper model optimizes the net load curve with the objectives of minimizing the fluctuation of the net load,maximizing the benefits of energy storage and controllable loads,and optimizing the flexibility adjustment capability.The upper layer model optimizes the net load curve by minimizing net load fluctuation,maximizing energy storage and controllable load revenue,and optimizing flexibility adjustment capability.In contrast,the lower layer model optimizes the power allocation of thermal power units and regulates the lost load of wind and solar power generation by minimizing the total system operating cost.The results show that the proposed strategy improves the flexibility of the grid by 15.2%,gives full play to the regulation capability of each flexibility resource,and reduces the fluctuation of the net load by 15.6%to achieve optimal coordination between different types of flexibility resources.展开更多
Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variat...Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid.展开更多
This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ...This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.展开更多
In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ...In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in t...This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.展开更多
The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper d...The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper discusses the impacts of power frequency deviation on the generators and electrical equipment in the network and presents the relationship between step load capabilities and generator operating parameters. For a power plant consisting of a number of generators both step load and power output requirements must be satisfied. An analysis method is proposed to facilitate the development of an operation strategy which can meet both step load and power demand requirements in the full load range.? Typical reciprocating engine step load curves are used to demonstrate the analysis method and the results are further optimised for lower operational cost. This analysis method provides a general approach to operation strategy of large reciprocating engines used in islanded power generation.展开更多
基金supported by the Science and Technology Project of Jiangsu Coastal Power Infrastructure Intelligent Engineering Research Center“Photovoltaic Power Prediction System Driven by Deep Learning and Multi-Source Data Fusion”(F2024-5044).
文摘Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.
文摘The penetration rate of new wind and photovoltaic energy in the power system has increased significantly,and the dramatic fluctuation of the net load of the grid has led to a severe lack of flexibility in the regional grid.This paper proposes a hierarchical optimal dispatch strategy for a high proportion of new energy power systems that considers the balanced response of grid flexibility.Firstly,various flexibility resource regulation capabilities on the source-load side are analyzed,and then flexibility demand and flexibility response are matched,and flexibility demand response assessment is proposed;then,a hierarchical optimal dispatch model of the grid taking flexibility adjustment capability into account is established,and the upper model optimizes the net load curve with the objectives of minimizing the fluctuation of the net load,maximizing the benefits of energy storage and controllable loads,and optimizing the flexibility adjustment capability.The upper layer model optimizes the net load curve by minimizing net load fluctuation,maximizing energy storage and controllable load revenue,and optimizing flexibility adjustment capability.In contrast,the lower layer model optimizes the power allocation of thermal power units and regulates the lost load of wind and solar power generation by minimizing the total system operating cost.The results show that the proposed strategy improves the flexibility of the grid by 15.2%,gives full play to the regulation capability of each flexibility resource,and reduces the fluctuation of the net load by 15.6%to achieve optimal coordination between different types of flexibility resources.
基金supported by the Inner Mongolia Power Company 2024 Staff Innovation Studio Innovation Project“Research on Cluster Output Prediction and Group Control Technology for County-Wide Distributed Photovoltaic Construction”.
文摘Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid.
基金Funded by the Science and Technology Program of Gansu Province(Nos.25JRRA497,23ZDFA017)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0950000)High-level Talent Funding of Kashi。
文摘This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.
基金supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network (XTCX202001)National Natural Science Foundation of China (52077061)。
文摘In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
文摘This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.
文摘The step load response of reciprocating engines is one of the key characteristics when considering its application in medium to large scale stationary power generation especially with islanded generation. This paper discusses the impacts of power frequency deviation on the generators and electrical equipment in the network and presents the relationship between step load capabilities and generator operating parameters. For a power plant consisting of a number of generators both step load and power output requirements must be satisfied. An analysis method is proposed to facilitate the development of an operation strategy which can meet both step load and power demand requirements in the full load range.? Typical reciprocating engine step load curves are used to demonstrate the analysis method and the results are further optimised for lower operational cost. This analysis method provides a general approach to operation strategy of large reciprocating engines used in islanded power generation.