期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
1
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy Functionally graded structure Compositional gradient Wear resistance.
在线阅读 下载PDF
Comparison of Different Virtual Inertia Control Methods for Inverter-based Generators 被引量:21
2
作者 Dawei Sun Hui Liu +3 位作者 Shunan Gao Linlin Wu Peng Song Xiaosheng Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第4期768-777,共10页
With the rapid development of inverter-based generators(IGs),power grid is faced with critical frequency stability challenges because the existing IGs have no inertia.To equip IGs with inertial response,researchers ha... With the rapid development of inverter-based generators(IGs),power grid is faced with critical frequency stability challenges because the existing IGs have no inertia.To equip IGs with inertial response,researchers have proposed several virtual inertia control methods,which can be classified into two categories:virtual synchronous generator(VSG)control and droop control based on rate of change of frequency(ROCOFdroop control).In this paper,the comparison between both virtual inertia control methods is conducted from three perspectives:mathematical model,output characteristic and small-signal stability.State-space models are firstly built to analyze the control mechanism of VSG control and ROCOF-droop control methods.Simulation and eigenvalue analysis are conducted to study the transient responses and oscillation characteristics of both methods,which is helpful to understand the advantages and limitations of existing virtual inertia control methods.Finally,the obtained theoretical results are validated through realtime laboratory(RT-LAB)hardware-in-loop simulation platform. 展开更多
关键词 Virtual inertia control virtual synchronous generator(VSG) small-signal model stability analyses subsynchronous oscillation
原文传递
Influence of Virtual Synchronous Generators on Low Frequency Oscillations 被引量:6
3
作者 Hui Liu Dawei Sun +3 位作者 Feng Zhao Yunfeng Tian Peng Song Xuekun Cheng 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第4期1029-1038,共10页
By simulating the operating dynamics of synchronous generators(SGs),the use of virtual synchronous gen-rators(VSGs)can help overcome inverter-based generators'shortcomings of low inertia and minimal damping for gr... By simulating the operating dynamics of synchronous generators(SGs),the use of virtual synchronous gen-rators(VSGs)can help overcome inverter-based generators'shortcomings of low inertia and minimal damping for gridforming applications.VSGs'stability are very important for their solar and wind electricity applications.Currently,the related research primarily focuses on VSGs and their applications for microgrids.There has been little research to explore how VSGs effect low frequency oscillations in power transmission systems.This paper describes a small-signal model of a VSGSG interconnected system,which is suitable for studying low frequency oscillation damping in a power transmission grid.Based on this model,the effects of VSGs on low frequency oscillations are compared with the effects of SGs to reveal the mechanism of how VSGs infuence damping characteristics.The influence of each VSG control loop on oscillations is also analyzed in this paper.Then,the low frequency oscillation risks with different types of VSGs are described.Finally,experiments on a real-time laboratory(RT-LAB)platform are conducted to verify the small-signal analysis results. 展开更多
关键词 Grid-forming inverters low frequency oscillation participation factor renewable electricity small-signal model virtual synchronous generator(VSG)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部