The rapid growth in the proportion of renewable-energy gener-ation,such as wind and solar power,has significantly heightened the power system’s dependence on climate.Global climate change will profoundly impact vario...The rapid growth in the proportion of renewable-energy gener-ation,such as wind and solar power,has significantly heightened the power system’s dependence on climate.Global climate change will profoundly impact various aspects of the system,including renewable-energy resource potential,power-system planning and operation,and electricity markets.The Intergovernmental Panel on Climate Change(IPCC)has pointed out that as climate change accelerates,extreme weather events will continue to become more frequent and severe.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen...Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.展开更多
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship...Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.展开更多
New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed s...New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.展开更多
Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward...The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.展开更多
Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power ...Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power that affects the generation capacity of power systems with a high share of renewable energy sources.Utilizing the Coupled Model Intercomparison Project Phase 6 datasets,a predictive model for low-output wind power was employed to investigate regional trends worldwide.The frequency and duration of low-output wind-power events exhibited increasing trends globally,particularly in East Asia and South America,but not in North America.By 2060,the annual total days with low-output wind power in East Asia and South America could rise to 13 and 5 d,and the maximum continuous duration of low-output wind power could reach 5 and 2 d,respectively.As wind power becomes a primary elec-tricity source,such low output could lead to shortages in energy supply within the power system,trig-gering large-scale power outages.This issue calls for critical attention when establishing power systems with a high share of renewable energy sources.The conclusions provide a basis for analyzing power supply risks and configuring flexible power sources for scenarios with a high share of renewable energy.展开更多
The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-va...The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-varying characteristics of the node voltage during dynamic processes.As a result,traditional calcu-lation methods for and characteristics of the power response of the network based on phasor and impe-dance lose their validity.Therefore,this paper undertakes mathematical calculations to reveal the power response of a network under excitation by voltage with time-varying amplitude and frequency(TVAF),relying on the original mathematical relationships and superimposed step response.Then,the multi-timescale characteristics of both the active and reactive power of the network are explored physically.Additionally,this paper reveals a new phenomenon of storing and releasing the active and reactive power of the network.To meet practical engineering requirements,a simplified power expression is presented.Finally,the theoretical analysis is validated through time-domain simulations.展开更多
Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy...Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability.展开更多
Photovoltaic(PV)systems are being increasingly implemented in the grid,and their intermittent output fluctuations threaten the stability of the grid,thereby requiring effective power ramp control(PRRC)strategies.In th...Photovoltaic(PV)systems are being increasingly implemented in the grid,and their intermittent output fluctuations threaten the stability of the grid,thereby requiring effective power ramp control(PRRC)strategies.In this study,we proposed a power fluctuation identification method to optimize the PRRC strategy.The K-means++cluster based on DTW used in this method,which clusters the historical PV power generation data into power curves corresponding to a specific weather type(sunny,cloudy,and rainy)in a time zone.Subsequently,wavelet decomposition is applied to discretize the power curves with extreme RR overrun to accurately identify the extreme fluctuation time zones.We conducted an analysis using minute-level data from a 100 kW PV plant in Arizona,which demonstrates that the proposed method can effectively identify high-risk periods.Weather patterns within the time zones were quantitatively identified using a weather probability model.A hardware-in-the-loop experimental platform was employed to validate two days of actual power data in Arizona,demonstrating the weather zoning accuracy of the method and the reasonableness of the control.The proposed methodology contributes significantly to PRRC strategy selection and parameter optimization(e.g.,ESS capacity storage allocation and APC power reserveΔP)in different time zones and weather conditions.展开更多
Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen...Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.展开更多
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.H...The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV...The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
文摘The rapid growth in the proportion of renewable-energy gener-ation,such as wind and solar power,has significantly heightened the power system’s dependence on climate.Global climate change will profoundly impact various aspects of the system,including renewable-energy resource potential,power-system planning and operation,and electricity markets.The Intergovernmental Panel on Climate Change(IPCC)has pointed out that as climate change accelerates,extreme weather events will continue to become more frequent and severe.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金supported by the National Natural Science Foundation of China(52272177,12204010)the Foundation for the Introduction of High-Level Talents of Anhui University(S020118002/097)+1 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-066)the Scientific Research Project of Anhui Provincial Higher Education Institution(2023AH040008)。
文摘Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.
基金funded by the Inner Mongolia Nature Foundation Project,Project number:2023JQ04.
文摘Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.
基金supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.52094023003L).
文摘New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
基金funded by the State Grid Science and Technology Project“Research on Key Technologies for Prediction and Early Warning of Large-Scale Offshore Wind Power Ramp Events Based on Meteorological Data Enhancement”(4000-202318098A-1-1-ZN).
文摘The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.
基金supported by the Joint Research Fund in Smart Grid(U1966601)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and the State Grid Cor-poration of China(SGCC).
文摘Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power that affects the generation capacity of power systems with a high share of renewable energy sources.Utilizing the Coupled Model Intercomparison Project Phase 6 datasets,a predictive model for low-output wind power was employed to investigate regional trends worldwide.The frequency and duration of low-output wind-power events exhibited increasing trends globally,particularly in East Asia and South America,but not in North America.By 2060,the annual total days with low-output wind power in East Asia and South America could rise to 13 and 5 d,and the maximum continuous duration of low-output wind power could reach 5 and 2 d,respectively.As wind power becomes a primary elec-tricity source,such low output could lead to shortages in energy supply within the power system,trig-gering large-scale power outages.This issue calls for critical attention when establishing power systems with a high share of renewable energy sources.The conclusions provide a basis for analyzing power supply risks and configuring flexible power sources for scenarios with a high share of renewable energy.
基金supported in part by the National Natural Science Fundation of China(52225704 and 52107096).
文摘The dynamics of network power response play a crucial role in system stability.However,the integration of power electronic equipment leads to amplitude and angular frequency(abbreviated as"frequency")time-varying characteristics of the node voltage during dynamic processes.As a result,traditional calcu-lation methods for and characteristics of the power response of the network based on phasor and impe-dance lose their validity.Therefore,this paper undertakes mathematical calculations to reveal the power response of a network under excitation by voltage with time-varying amplitude and frequency(TVAF),relying on the original mathematical relationships and superimposed step response.Then,the multi-timescale characteristics of both the active and reactive power of the network are explored physically.Additionally,this paper reveals a new phenomenon of storing and releasing the active and reactive power of the network.To meet practical engineering requirements,a simplified power expression is presented.Finally,the theoretical analysis is validated through time-domain simulations.
基金supported by the National Key Research&Development Program of China under Grant 2024YFB2408900.
文摘Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability.
基金supported by the Natural Science Research Project of Jiangsu Higher Education Institutions(23KJB470019)the Natural Science Foundation of Jiangsu Province under Grant BK20240594.
文摘Photovoltaic(PV)systems are being increasingly implemented in the grid,and their intermittent output fluctuations threaten the stability of the grid,thereby requiring effective power ramp control(PRRC)strategies.In this study,we proposed a power fluctuation identification method to optimize the PRRC strategy.The K-means++cluster based on DTW used in this method,which clusters the historical PV power generation data into power curves corresponding to a specific weather type(sunny,cloudy,and rainy)in a time zone.Subsequently,wavelet decomposition is applied to discretize the power curves with extreme RR overrun to accurately identify the extreme fluctuation time zones.We conducted an analysis using minute-level data from a 100 kW PV plant in Arizona,which demonstrates that the proposed method can effectively identify high-risk periods.Weather patterns within the time zones were quantitatively identified using a weather probability model.A hardware-in-the-loop experimental platform was employed to validate two days of actual power data in Arizona,demonstrating the weather zoning accuracy of the method and the reasonableness of the control.The proposed methodology contributes significantly to PRRC strategy selection and parameter optimization(e.g.,ESS capacity storage allocation and APC power reserveΔP)in different time zones and weather conditions.
基金supported by the Science and Technology Project of Jiangsu Coastal Power Infrastructure Intelligent Engineering Research Center“Photovoltaic Power Prediction System Driven by Deep Learning and Multi-Source Data Fusion”(F2024-5044).
文摘Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010(5400-202199534A-0-5-ZN).
文摘The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
文摘The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.