Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily...Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily involving abnormal development and damage of the dopaminergic system,pose significant public health challenges.Microglia,as the primary immune cells in the brain,are crucial in regulating neuronal circuit development and survival.From the embryonic stage to adulthood,microglia exhibit stage-specific gene expression profiles,transcriptome characteristics,and functional phenotypes,enhancing the susceptibility to early life stress.However,the role of microglia in mediating dopaminergic system disorders under early life stress conditions remains poorly understood.This review presents an up-to-date overview of preclinical studies elucidating the impact of early life stress on microglia,leading to dopaminergic system disorders,along with the underlying mechanisms and therapeutic potential for neurodegenerative and neurodevelopmental conditions.Impaired microglial activity damages dopaminergic neurons by diminishing neurotrophic support(e.g.,insulin-like growth factor-1)and hinders dopaminergic axon growth through defective phagocytosis and synaptic pruning.Furthermore,blunted microglial immunoreactivity suppresses striatal dopaminergic circuit development and reduces neuronal transmission.Furthermore,inflammation and oxidative stress induced by activated microglia can directly damage dopaminergic neurons,inhibiting dopamine synthesis,reuptake,and receptor activity.Enhanced microglial phagocytosis inhibits dopamine axon extension.These long-lasting effects of microglial perturbations may be driven by early life stress–induced epigenetic reprogramming of microglia.Indirectly,early life stress may influence microglial function through various pathways,such as astrocytic activation,the hypothalamic–pituitary–adrenal axis,the gut–brain axis,and maternal immune signaling.Finally,various therapeutic strategies and molecular mechanisms for targeting microglia to restore the dopaminergic system were summarized and discussed.These strategies include classical antidepressants and antipsychotics,antibiotics and anti-inflammatory agents,and herbal-derived medicine.Further investigations combining pharmacological interventions and genetic strategies are essential to elucidate the causal role of microglial phenotypic and functional perturbations in the dopaminergic system disrupted by early life stress.展开更多
Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessf...Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessfully prepared by blending ZIF-8 particles with sodium alginate,forming hydrogel beads in the presence of divalent metal ions,and subsequently subjecting them to high-temperature pyrolysis.Various characterization techniques were employed to evaluate the properties of the prepared materials.The introduction of a carbon framework on ZIF-8-derived particles effectively enhanced the conductivity of the prepared materials.The SA/ZIF-8(1.0)-C sample heated at 800℃exhibited a specific capacitance of up to 208 F g^(-1)at a current density of 0.5 A g^(-1)and outstanding cyclic stability.Even after 10,000 charge and discharge cycles,its capacitance retention rate remained as high as 87.14%.The symmetric supercapacitor constructed with the composite demonstrated an excellent energy density of 14.58 Wh kg^(-1)at a power capacity of 403.85 W kg^(-1).The implementation of this study provides new ideas and inspiration for the development of high-performance supercapacitors.展开更多
The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratoonin...The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.展开更多
Two new species of the Aglaostigma laticinctum subgroup belonging to A.tertium group,are described and illustrated in this study:A.leucogaster Liu,Li&Wei sp.nov.and A.rufitegula Liu,Li&Wei sp.nov.The Aglaostig...Two new species of the Aglaostigma laticinctum subgroup belonging to A.tertium group,are described and illustrated in this study:A.leucogaster Liu,Li&Wei sp.nov.and A.rufitegula Liu,Li&Wei sp.nov.The Aglaostigma laticinctum subgroup is proposed here for the first time,with a brief discussion of its diagnostic features.Additionally,a key to all known species of the A.laticinctum subgroup from China is provided.展开更多
BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ trans...BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.展开更多
Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces.Conventional mode...Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces.Conventional models often overlook structural anisotropy and dynamic boundary progression,while experimental determination of key parameters under cryogenic conditions remains difficult.To address these,this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface,which effectively handles continuous computational domain deformation.Additionally,specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties.A novel non-contact gravimetric system was introduced to monitor mass loss in real time without disrupting vacuum,enabling accurate experimental validation.Combined with dehydration data,the model quantified critical parameters including effective thermal conductivity of the dried layer,vapor diffusivity,and sublimation mass transfer resistance.The results show that the migration of the sublimation fronts from both the inner and outer tunics toward the tunica media significantly alters the drying kinetics and heat-mass transfer characteristics.The proposed approach provides an adaptable and predictive framework for simulating freeze-drying processes in structurally heterogeneous systems with spatially varying thermophysical properties.展开更多
Hybrid teaching has become an essential direction of the teaching reform and innovation of higher education,and puts forward new requirements for the evaluation system of teaching quality.The background of hybrid teac...Hybrid teaching has become an essential direction of the teaching reform and innovation of higher education,and puts forward new requirements for the evaluation system of teaching quality.The background of hybrid teaching,the CIPP model,and teaching quality evaluation system,and the necessity of constructing a hybrid teaching quality evaluation system are further discussed.This paper also discusses the evaluation focus of the CIPP model and its applicability in the hybrid teaching quality evaluation and believes that the CIPP model can reflect the concept innovation,target diversity,process advancement,and subject participation;the evaluation indicator system of hybrid teaching quality is designed based on the CIPP model,which provides a reference for the hybrid teaching quality evaluation and teaching reform.展开更多
Vegetation change is the most intuitive and sensitive bioindicator reflecting seasonal and interannual variations in the external environment,and it can directly reflect the rapid response of terrestrial ecosystems to...Vegetation change is the most intuitive and sensitive bioindicator reflecting seasonal and interannual variations in the external environment,and it can directly reflect the rapid response of terrestrial ecosystems to climate change.Using remote sensing and meteorological data,this study revealed the spatiotemporal characteristics of leaf area index(LAI)in the north of China during 1982–2022,clarified the response of LAI change to different meteorological factors,quantified the impacts of climate change and human activities on LAI change,and predicted the future trends in LAI change.From 1982 to 2022,the vegetation in the north of China generally showed a greening trend with a change rate of 0.0071 m2/(m2•a).Temperature was strongly positively correlated with LAI and was the main climate factor driving LAI change.Residual analysis revealed that vegetation improvement occurred in across 74.53%of the study area,and vegetation improvement in about 96.83%of the improved zone was attributed to a combination of climate change and human activities.The regions where anthropogenic contribution exceeded 60.00%covered 36.83%of human-affected areas,while the regions where climatic contribution exceeded 60.00%covered 19.77%of climate-affected areas,demonstrating that human activities influenced the intensity of LAI change more deeply despite the broad spatial impact of climate change.Human activities such as afforestation and the Three-North Protective Forest Program played the dominant role in vegetation greening compared to climate change.Hurst index analysis indicated that 80.30%of vegetation in the north of China is expected to experience a non-sustained improvement in the future.These findings will provide a scientific basis for optimizing the protection strategies of the national ecological barrier areas and evaluating the effectiveness of major ecological projects.展开更多
Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb rema...Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb remains the primary impediment to successful GFS outcomes.Perioperative utilization of antimitotics,while frontline in combating fibrosis and modulating the wound healing process,carries the risk of vision-threatening complications.Given the complexity of the wound healing cascade and the potential insufficiency of targeting a single molecule,there is an imperative to expand therapeutic modalities through combination therapies.This review offers a comprehensive elucidation of the fibrogenesis post-GFS,a synthesis unprecedented in the available literature,and aims to inform the broadening of therapeutic strategies for GFS.展开更多
Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failur...Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failure of roadway support,thus threatening the safety of the roadway.In this paper,the variable angle shear test of drilled specimens under the action of static and dynamic loads is used to study the evolution of mechanical parameters of the specimens and their influence on the plastic zone of the sur-rounding rock.The shear strength decreases linearly with the increase of drilling diameter.With the increase of pre-static load level and dynamic load amplitude,the cohesion first increases and then decreases,and the internal friction angle decreases.Moreover,the shear failure surface changes from rough to smooth.The reasons include that the static load enhances the tooth cutting effect and the repeated friction of cracks caused by the dynamic load.Borehole pressure relief leads to an increase in the radius of the plastic zone of the surrounding rock following a quadratic function.The research results of this paper provide a theoretical basis for designing drilling unloading parameters and supporting parameters for rock burst roadways.展开更多
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t...To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively.展开更多
A hybrid fiber-reinforced polymer(HFRP)continuous sucker rod,comprising a carbon fiber-reinforced polymer(CFRP)core layer,a glass fiber-reinforced polymer(GFRP)winding layer,and a GFRP coating layer(CFRP:GFRP=2:3),has...A hybrid fiber-reinforced polymer(HFRP)continuous sucker rod,comprising a carbon fiber-reinforced polymer(CFRP)core layer,a glass fiber-reinforced polymer(GFRP)winding layer,and a GFRP coating layer(CFRP:GFRP=2:3),has been developed and widely used in oilfield extraction due to its lower specific gravity,enhanced corrosion resistance,and superior strength.However,HFRP rod joints and their adjacent sections are prone to multi-mode failures,including fracture,debonding,and cracking.Due to the complexity of joint structure and the coupling of tension,bending,and torsion,the failure mechanism is unclear.To address this issue,a dual-scale failure assessment methodology for HFRP rods was proposed,utilizing both macro and meso finite element models(FEM).This methodology was validated through tensile and bending experiments,which yielded critical loads for theφ22 mm HFRP rod:a tensile load of 340.2 kN,a torque of 132.3 N m,and a bending moment of 1192.4 N m.Additionally,a comprehensive FEM of the joint was established,which identified potential failure points at the necking of the rotary joint,resin adhesive and the HFRP rod cross-section at the first groove tip.These failure modes closely matched the experimental observations.Furthermore,the simulation results show that stress concentration at the joint reduced the tensile,bending,and torsional strengths of the HFRP rod to 61%,12%,and 82%of their original values,respectively.The effects of bending moments and torque on the tensile strength of HFRP rods were subsequently explored,leading to the development of an equivalent fatigue assessment method for HFRP rod joints.This method,based on the fatigue characteristics of HFRP rods and joint components,reveals that the primary cause of joint failure is the susceptibility of both the joint and the HFRP rod to bending moments and torque induced by dynamic buckling of the sucker rod string(SRS).Using this method,the fatigue ultimate axial force of theφ22 mm HFRP joint was determined to be 91.5 kN,with corresponding fatigue ultimate torque and bending moment under an axial force of 62.4 kN being 89.3 N m and 71.5 N m,respectively.Finally,a design method incorporating a concentrated weighting strategy for HFRP-steel mixed rods was proposed to enhance their service life,and its effectiveness was demonstrated through on-site testing.展开更多
Recent studies have shown that mucilage secretion from aerial roots is an essential feature of modern maize inbred lines,with some retaining the nitrogen-fixing capabilities of ancient landraces.To explore the genetic...Recent studies have shown that mucilage secretion from aerial roots is an essential feature of modern maize inbred lines,with some retaining the nitrogen-fixing capabilities of ancient landraces.To explore the genetic basis of nitrogen fixation in mucilage and its evolution from teosinte(Zea mays ssp.mexicana)to modern maize,we developed a recombinant inbred line(RIL)population from teosinte and cultivated it under low-nitrogen conditions.Large-scale,multi-year,and multi-environment analyses of RIL-Teo,Doubled Haploid-A(DH-A),Doubled Haploid-B(DH-B),and association populations led to the identification of 15 quantitative trait loci(QTL),68 quantitative trait nucleotides(QTN),and 59 candidate genes linked to mucilage secretion from aerial roots.Functional verification of the candidate gene ZmAco3,which is associated with mucilage secretion in aerial roots,demonstrated that deletion of this gene resulted in a reduction in mucilage secretion in aerial roots.In addition,most maize inbred lines exhibited stronger mucilage secretion from aerial roots under low-nitrogen conditions than under normal-nitrogen conditions.We categorized mucilage secretion into constitutive and low-nitrogen-inducible types.Through genotype-by-environment interaction studies,8 QTL,16 QTN,and 19 candidate genes were identified,revealing the genetic mechanisms underlying mucilage secretion under low-nitrogen conditions.These findings provide a comprehensive genetic analysis of the mucilage-secreting ability of maize aerial roots,contributing to our understanding of nitrogen fixation and offering potential avenues for enhancing nitrogen fixation in modern maize lines.This research advances knowledge of plant nutrient acquisition strategies and has implications for sustainable agricultural practices.展开更多
Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.Th...Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.The emergence of various Convolutional Neural Network-based detection strategies substantially enhances pedestrian detection accuracy but still does not solve this problem well.This paper deeply analyzes the detection framework of the two-stage CNN detection methods and finds out false positives in detection results are due to its training strategy misclassifying some false proposals,thus weakening the classification capability of the following subnetwork and hardly suppressing false ones.To solve this problem,this paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods effectively learn to distinguish the pedestrian and non-pedestrian samples and suppress the false positives in the final detection results.The core of the proposed algorithm is to redesign the training proposal generating scheme for the two-stage CNN detection methods,which can avoid a certain number of false ones that mislead its training process.With the help of the proposed algorithm,the detection accuracy of the MetroNext,a smaller and more accurate metro passenger detector,is further improved,which further decreases false ones in its metro passenger detection results.Based on various challenging benchmark datasets,experiment results have demonstrated that the feasibility of the proposed algorithm is effective in improving pedestrian detection accuracy by removing false positives.Compared with the existing state-of-the-art detection networks,PSTNet demonstrates better overall prediction performance in accuracy,total number of parameters,and inference time;thus,it can become a practical solution for hunting pedestrians on various hardware platforms,especially for mobile and edge devices.展开更多
A new species of the Macrophya malaisei group in the genus Macrophya Dahlbom,1835 from Zhejiang in China is described:M.alboclypea Li,Liu&Wei sp.nov.A revised key to the Chinese and Japanese species of the M.malai...A new species of the Macrophya malaisei group in the genus Macrophya Dahlbom,1835 from Zhejiang in China is described:M.alboclypea Li,Liu&Wei sp.nov.A revised key to the Chinese and Japanese species of the M.malaisei group is provided.展开更多
Thalidomide(THA)is renowned for its potent anti-inflammatory properties.This study aimed to elucidate its underlying mechanisms in the context of Crohn's disease(CD)development.Mouse colitis models were establishe...Thalidomide(THA)is renowned for its potent anti-inflammatory properties.This study aimed to elucidate its underlying mechanisms in the context of Crohn's disease(CD)development.Mouse colitis models were established by dextran sulfate sodium(DSS)treatment.Fecal microbiota and metabolites were analyzed by metagenomic sequencing and mass spectrometry,respectively.Antibiotic-treated mice served as models for microbiota depletion and transplantation.The expression of forkhead box P3+(FOXP3+)regulatory T cells(Tregs)was measured by flow cytometry and immunohistochemical assay in colitis model and patient cohort.THA inhibited colitis in DSS-treated mice by altering the gut microbiota profile,with an increased abundance of probiotics Bacteroides fragilis,while pathogenic bacteria were depleted.In addition,THA increased beneficial metabolites bile acids and significantly restored gut barrier function.Transcriptomic profiling revealed that THA inhibited interleukin-17(IL-17),IL-1βand cell cycle signaling.Fecal microbiota transplantation from THA-treated mice to microbiota-depleted mice partly recapitulated the effects of THA.Specifically,increased level of gut commensal B.fragilis was observed,correlated with elevated levels of the microbial metabolite 3alpha-hydroxy-7-oxo-5beta-cholanic acid(7-ketolithocholic acid,7-KA)following THA treatment.This microbial metabolite may stable FOXP3 expression by targeting the receptor FMR1 autosomal homolog 1(FXR1)to inhibit autophagy.An interaction between FOXP3 and FXR1 was identified,with binding regions localized to the FOXP3 domain(aa238-335)and the FXR1 domain(aa82-222),respectively.Conclusively,THA modulates the gut microbiota and metabolite profiles towards a more beneficial composition,enhances gut barrier function,promotes the differentiation of FOXP3+Tregs and curbs pro-inflammatory pathways.展开更多
Background:This study investigated the relationship between meteorological factors and daily outpatient visits to rabies post-exposure prophylaxis clinics to inform animal injury prevention strategies.Methods:Daily ou...Background:This study investigated the relationship between meteorological factors and daily outpatient visits to rabies post-exposure prophylaxis clinics to inform animal injury prevention strategies.Methods:Daily outpatient visit data from rabies post-exposure prophylaxis clinics in Jinan and corresponding meteorological data were collected from January 1,2020,to December 31,2022.A generalized additive model was used to quantitatively assess the relationship between these factors.A total of 202,010 patients visited these clinics during this period.Results:Daily mean,maximum,and minimum temperatures,and relative humidity were positively associated with outpatient visits.A 1°C increase in mean,maximum,and minimum temperatures corresponded to increases in daily visits of 1.65%(95%Confidence Interval(CI):1.55–1.76),1.59%(95%CI:1.50–1.69),and 1.27%(95%CI:1.17–1.36)respectively.Each 1%increase in relative humidity was associated with a 0.18%(95%CI:0.15–0.20)increase in visits.Mean pressure was negatively associated with outpatient visits,the outpatient visits decreased by 0.91%(95%CI:−1.71 to−0.11)for every 1 kPa increased in mean pressure.Conclusion:The change of meteorological factors will lead to the increase of outpatient visits in rabies exposure treatment clinic.展开更多
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ...Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process.展开更多
Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the im...Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.展开更多
Two new species in the genus Aglaostigma Kirby(Hymenoptera:Tenthredinidae)are described and illustrated from Mts.Nanling,China:A.luoyoulaii Li,Liu&Wei sp.nov.and A.mengmeng Li&Wei sp.nov.
基金supported by the National Natural Science Foundation of China,Nos.82304990(to NY),81973748(to JC),82174278(to JC)the National Key R&D Program of China,No.2023YFE0209500(to JC)+4 种基金China Postdoctoral Science Foundation,No.2023M732380(to NY)Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine,No.202102010014(to JC)Huang Zhendong Research Fund for Traditional Chinese Medicine of Jinan University,No.201911(to JC)National Innovation and Entrepreneurship Training Program for Undergraduates in China,No.202310559128(to NY and QM)Innovation and Entrepreneurship Training Program for Undergraduates at Jinan University,Nos.CX24380,CX24381(both to NY and QM)。
文摘Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily involving abnormal development and damage of the dopaminergic system,pose significant public health challenges.Microglia,as the primary immune cells in the brain,are crucial in regulating neuronal circuit development and survival.From the embryonic stage to adulthood,microglia exhibit stage-specific gene expression profiles,transcriptome characteristics,and functional phenotypes,enhancing the susceptibility to early life stress.However,the role of microglia in mediating dopaminergic system disorders under early life stress conditions remains poorly understood.This review presents an up-to-date overview of preclinical studies elucidating the impact of early life stress on microglia,leading to dopaminergic system disorders,along with the underlying mechanisms and therapeutic potential for neurodegenerative and neurodevelopmental conditions.Impaired microglial activity damages dopaminergic neurons by diminishing neurotrophic support(e.g.,insulin-like growth factor-1)and hinders dopaminergic axon growth through defective phagocytosis and synaptic pruning.Furthermore,blunted microglial immunoreactivity suppresses striatal dopaminergic circuit development and reduces neuronal transmission.Furthermore,inflammation and oxidative stress induced by activated microglia can directly damage dopaminergic neurons,inhibiting dopamine synthesis,reuptake,and receptor activity.Enhanced microglial phagocytosis inhibits dopamine axon extension.These long-lasting effects of microglial perturbations may be driven by early life stress–induced epigenetic reprogramming of microglia.Indirectly,early life stress may influence microglial function through various pathways,such as astrocytic activation,the hypothalamic–pituitary–adrenal axis,the gut–brain axis,and maternal immune signaling.Finally,various therapeutic strategies and molecular mechanisms for targeting microglia to restore the dopaminergic system were summarized and discussed.These strategies include classical antidepressants and antipsychotics,antibiotics and anti-inflammatory agents,and herbal-derived medicine.Further investigations combining pharmacological interventions and genetic strategies are essential to elucidate the causal role of microglial phenotypic and functional perturbations in the dopaminergic system disrupted by early life stress.
基金supports from the National Natural Science Foundation of China(22075034,22178037,and 22478047)Natural Science Foundation of Liaoning Province of China(2021-MS-303)the China Scholarship Council(CSC No 202008210171).
文摘Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessfully prepared by blending ZIF-8 particles with sodium alginate,forming hydrogel beads in the presence of divalent metal ions,and subsequently subjecting them to high-temperature pyrolysis.Various characterization techniques were employed to evaluate the properties of the prepared materials.The introduction of a carbon framework on ZIF-8-derived particles effectively enhanced the conductivity of the prepared materials.The SA/ZIF-8(1.0)-C sample heated at 800℃exhibited a specific capacitance of up to 208 F g^(-1)at a current density of 0.5 A g^(-1)and outstanding cyclic stability.Even after 10,000 charge and discharge cycles,its capacitance retention rate remained as high as 87.14%.The symmetric supercapacitor constructed with the composite demonstrated an excellent energy density of 14.58 Wh kg^(-1)at a power capacity of 403.85 W kg^(-1).The implementation of this study provides new ideas and inspiration for the development of high-performance supercapacitors.
基金supported by the Key Research and Development Program Project of Hunan Province, China (Grant No. 2023NK2003)the National Key Research and Development Program of China (Grant No. 2022YFD2301001-03)the National Key Research and Development Program of China (Grant No. 2022YFD2301003)
文摘The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.
基金supported by the National Natural Science Foundation of China(31970447)starting fund for doctoral research of Lishui University(6004LMM01Z)the Special Funds for Scientific Research of Postdoctoral Work Station Assessment in Zhejiang Province,China(2023).
文摘Two new species of the Aglaostigma laticinctum subgroup belonging to A.tertium group,are described and illustrated in this study:A.leucogaster Liu,Li&Wei sp.nov.and A.rufitegula Liu,Li&Wei sp.nov.The Aglaostigma laticinctum subgroup is proposed here for the first time,with a brief discussion of its diagnostic features.Additionally,a key to all known species of the A.laticinctum subgroup from China is provided.
文摘BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.
基金funded by the Scientific and Technological Research Projects in Henan Province(No.252102310425)the Key Scientific Research Projects of Higher Education Institutions in Henan Province(No.23A560018).
文摘Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces.Conventional models often overlook structural anisotropy and dynamic boundary progression,while experimental determination of key parameters under cryogenic conditions remains difficult.To address these,this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface,which effectively handles continuous computational domain deformation.Additionally,specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties.A novel non-contact gravimetric system was introduced to monitor mass loss in real time without disrupting vacuum,enabling accurate experimental validation.Combined with dehydration data,the model quantified critical parameters including effective thermal conductivity of the dried layer,vapor diffusivity,and sublimation mass transfer resistance.The results show that the migration of the sublimation fronts from both the inner and outer tunics toward the tunica media significantly alters the drying kinetics and heat-mass transfer characteristics.The proposed approach provides an adaptable and predictive framework for simulating freeze-drying processes in structurally heterogeneous systems with spatially varying thermophysical properties.
基金The 2025 Beijing Postdoctoral Research Activity Funding Project“Exploring Hybrid Teaching Quality Evaluation System Based on the CIPP Model Construction in Higher Education”(2025114)。
文摘Hybrid teaching has become an essential direction of the teaching reform and innovation of higher education,and puts forward new requirements for the evaluation system of teaching quality.The background of hybrid teaching,the CIPP model,and teaching quality evaluation system,and the necessity of constructing a hybrid teaching quality evaluation system are further discussed.This paper also discusses the evaluation focus of the CIPP model and its applicability in the hybrid teaching quality evaluation and believes that the CIPP model can reflect the concept innovation,target diversity,process advancement,and subject participation;the evaluation indicator system of hybrid teaching quality is designed based on the CIPP model,which provides a reference for the hybrid teaching quality evaluation and teaching reform.
基金supported by the National Natural Science Foundation of China(42301127)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2023D01C185).
文摘Vegetation change is the most intuitive and sensitive bioindicator reflecting seasonal and interannual variations in the external environment,and it can directly reflect the rapid response of terrestrial ecosystems to climate change.Using remote sensing and meteorological data,this study revealed the spatiotemporal characteristics of leaf area index(LAI)in the north of China during 1982–2022,clarified the response of LAI change to different meteorological factors,quantified the impacts of climate change and human activities on LAI change,and predicted the future trends in LAI change.From 1982 to 2022,the vegetation in the north of China generally showed a greening trend with a change rate of 0.0071 m2/(m2•a).Temperature was strongly positively correlated with LAI and was the main climate factor driving LAI change.Residual analysis revealed that vegetation improvement occurred in across 74.53%of the study area,and vegetation improvement in about 96.83%of the improved zone was attributed to a combination of climate change and human activities.The regions where anthropogenic contribution exceeded 60.00%covered 36.83%of human-affected areas,while the regions where climatic contribution exceeded 60.00%covered 19.77%of climate-affected areas,demonstrating that human activities influenced the intensity of LAI change more deeply despite the broad spatial impact of climate change.Human activities such as afforestation and the Three-North Protective Forest Program played the dominant role in vegetation greening compared to climate change.Hurst index analysis indicated that 80.30%of vegetation in the north of China is expected to experience a non-sustained improvement in the future.These findings will provide a scientific basis for optimizing the protection strategies of the national ecological barrier areas and evaluating the effectiveness of major ecological projects.
基金Supported by Hospital Level Project of the Eye Hospital of China Academy of Chinese Medical Sciences(No.GSP5-40)Internal Project of the Eye Hospital of China Academy of Chinese Medical Sciences(No.1011632).
文摘Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb remains the primary impediment to successful GFS outcomes.Perioperative utilization of antimitotics,while frontline in combating fibrosis and modulating the wound healing process,carries the risk of vision-threatening complications.Given the complexity of the wound healing cascade and the potential insufficiency of targeting a single molecule,there is an imperative to expand therapeutic modalities through combination therapies.This review offers a comprehensive elucidation of the fibrogenesis post-GFS,a synthesis unprecedented in the available literature,and aims to inform the broadening of therapeutic strategies for GFS.
基金supported by the National Natural Science Foundation of China(Nos.52374100,52525401,and 52304150)Outstanding Young Talent Project of Shanxi Province(No.SJYC2024301)Research Project Supported by Shanxi Scholarship Council of China(No.2023-041).
文摘Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failure of roadway support,thus threatening the safety of the roadway.In this paper,the variable angle shear test of drilled specimens under the action of static and dynamic loads is used to study the evolution of mechanical parameters of the specimens and their influence on the plastic zone of the sur-rounding rock.The shear strength decreases linearly with the increase of drilling diameter.With the increase of pre-static load level and dynamic load amplitude,the cohesion first increases and then decreases,and the internal friction angle decreases.Moreover,the shear failure surface changes from rough to smooth.The reasons include that the static load enhances the tooth cutting effect and the repeated friction of cracks caused by the dynamic load.Borehole pressure relief leads to an increase in the radius of the plastic zone of the surrounding rock following a quadratic function.The research results of this paper provide a theoretical basis for designing drilling unloading parameters and supporting parameters for rock burst roadways.
基金supported by National Natural Science Foundation of China(No.62163036).
文摘To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively.
基金the Fundamental Research Funds for the Central Universities under Grant no.24CX02019Athe Opening Fund of National Engineering Research Center of Marine Geophysical Prospecting and Exploration and Development Equipment under Grant no.24CX02019A。
文摘A hybrid fiber-reinforced polymer(HFRP)continuous sucker rod,comprising a carbon fiber-reinforced polymer(CFRP)core layer,a glass fiber-reinforced polymer(GFRP)winding layer,and a GFRP coating layer(CFRP:GFRP=2:3),has been developed and widely used in oilfield extraction due to its lower specific gravity,enhanced corrosion resistance,and superior strength.However,HFRP rod joints and their adjacent sections are prone to multi-mode failures,including fracture,debonding,and cracking.Due to the complexity of joint structure and the coupling of tension,bending,and torsion,the failure mechanism is unclear.To address this issue,a dual-scale failure assessment methodology for HFRP rods was proposed,utilizing both macro and meso finite element models(FEM).This methodology was validated through tensile and bending experiments,which yielded critical loads for theφ22 mm HFRP rod:a tensile load of 340.2 kN,a torque of 132.3 N m,and a bending moment of 1192.4 N m.Additionally,a comprehensive FEM of the joint was established,which identified potential failure points at the necking of the rotary joint,resin adhesive and the HFRP rod cross-section at the first groove tip.These failure modes closely matched the experimental observations.Furthermore,the simulation results show that stress concentration at the joint reduced the tensile,bending,and torsional strengths of the HFRP rod to 61%,12%,and 82%of their original values,respectively.The effects of bending moments and torque on the tensile strength of HFRP rods were subsequently explored,leading to the development of an equivalent fatigue assessment method for HFRP rod joints.This method,based on the fatigue characteristics of HFRP rods and joint components,reveals that the primary cause of joint failure is the susceptibility of both the joint and the HFRP rod to bending moments and torque induced by dynamic buckling of the sucker rod string(SRS).Using this method,the fatigue ultimate axial force of theφ22 mm HFRP joint was determined to be 91.5 kN,with corresponding fatigue ultimate torque and bending moment under an axial force of 62.4 kN being 89.3 N m and 71.5 N m,respectively.Finally,a design method incorporating a concentrated weighting strategy for HFRP-steel mixed rods was proposed to enhance their service life,and its effectiveness was demonstrated through on-site testing.
基金supported by the National Natural Science Foundation of China(32401919)the Department of Science and Technology of Henan Province(242102111126).
文摘Recent studies have shown that mucilage secretion from aerial roots is an essential feature of modern maize inbred lines,with some retaining the nitrogen-fixing capabilities of ancient landraces.To explore the genetic basis of nitrogen fixation in mucilage and its evolution from teosinte(Zea mays ssp.mexicana)to modern maize,we developed a recombinant inbred line(RIL)population from teosinte and cultivated it under low-nitrogen conditions.Large-scale,multi-year,and multi-environment analyses of RIL-Teo,Doubled Haploid-A(DH-A),Doubled Haploid-B(DH-B),and association populations led to the identification of 15 quantitative trait loci(QTL),68 quantitative trait nucleotides(QTN),and 59 candidate genes linked to mucilage secretion from aerial roots.Functional verification of the candidate gene ZmAco3,which is associated with mucilage secretion in aerial roots,demonstrated that deletion of this gene resulted in a reduction in mucilage secretion in aerial roots.In addition,most maize inbred lines exhibited stronger mucilage secretion from aerial roots under low-nitrogen conditions than under normal-nitrogen conditions.We categorized mucilage secretion into constitutive and low-nitrogen-inducible types.Through genotype-by-environment interaction studies,8 QTL,16 QTN,and 19 candidate genes were identified,revealing the genetic mechanisms underlying mucilage secretion under low-nitrogen conditions.These findings provide a comprehensive genetic analysis of the mucilage-secreting ability of maize aerial roots,contributing to our understanding of nitrogen fixation and offering potential avenues for enhancing nitrogen fixation in modern maize lines.This research advances knowledge of plant nutrient acquisition strategies and has implications for sustainable agricultural practices.
文摘Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.The emergence of various Convolutional Neural Network-based detection strategies substantially enhances pedestrian detection accuracy but still does not solve this problem well.This paper deeply analyzes the detection framework of the two-stage CNN detection methods and finds out false positives in detection results are due to its training strategy misclassifying some false proposals,thus weakening the classification capability of the following subnetwork and hardly suppressing false ones.To solve this problem,this paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods effectively learn to distinguish the pedestrian and non-pedestrian samples and suppress the false positives in the final detection results.The core of the proposed algorithm is to redesign the training proposal generating scheme for the two-stage CNN detection methods,which can avoid a certain number of false ones that mislead its training process.With the help of the proposed algorithm,the detection accuracy of the MetroNext,a smaller and more accurate metro passenger detector,is further improved,which further decreases false ones in its metro passenger detection results.Based on various challenging benchmark datasets,experiment results have demonstrated that the feasibility of the proposed algorithm is effective in improving pedestrian detection accuracy by removing false positives.Compared with the existing state-of-the-art detection networks,PSTNet demonstrates better overall prediction performance in accuracy,total number of parameters,and inference time;thus,it can become a practical solution for hunting pedestrians on various hardware platforms,especially for mobile and edge devices.
基金supported by the Scientific Research Project of Baishanzu National Park(2023JBGS07)the National Natural Science Foundation of China(31970447,32370500)the Special Funds for Scientific Research of Postdoctoral Work Station Assessment in Zhejiang Province,China(2023).
文摘A new species of the Macrophya malaisei group in the genus Macrophya Dahlbom,1835 from Zhejiang in China is described:M.alboclypea Li,Liu&Wei sp.nov.A revised key to the Chinese and Japanese species of the M.malaisei group is provided.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82360112)the project supported by Jiangxi Provincial Natural Science Foundation,China(Grant No.:20232BAB216021)+2 种基金China Postdoctoral Science Foundation(Grant No.:2023M741522)the Key Laboratory Project of Digestive Diseases in Jiangxi Province,China(Program No.:2024SSY06101)Jiangxi Clinical Research Center for Gastroenterology,China(Program No.:20223BCG74011).
文摘Thalidomide(THA)is renowned for its potent anti-inflammatory properties.This study aimed to elucidate its underlying mechanisms in the context of Crohn's disease(CD)development.Mouse colitis models were established by dextran sulfate sodium(DSS)treatment.Fecal microbiota and metabolites were analyzed by metagenomic sequencing and mass spectrometry,respectively.Antibiotic-treated mice served as models for microbiota depletion and transplantation.The expression of forkhead box P3+(FOXP3+)regulatory T cells(Tregs)was measured by flow cytometry and immunohistochemical assay in colitis model and patient cohort.THA inhibited colitis in DSS-treated mice by altering the gut microbiota profile,with an increased abundance of probiotics Bacteroides fragilis,while pathogenic bacteria were depleted.In addition,THA increased beneficial metabolites bile acids and significantly restored gut barrier function.Transcriptomic profiling revealed that THA inhibited interleukin-17(IL-17),IL-1βand cell cycle signaling.Fecal microbiota transplantation from THA-treated mice to microbiota-depleted mice partly recapitulated the effects of THA.Specifically,increased level of gut commensal B.fragilis was observed,correlated with elevated levels of the microbial metabolite 3alpha-hydroxy-7-oxo-5beta-cholanic acid(7-ketolithocholic acid,7-KA)following THA treatment.This microbial metabolite may stable FOXP3 expression by targeting the receptor FMR1 autosomal homolog 1(FXR1)to inhibit autophagy.An interaction between FOXP3 and FXR1 was identified,with binding regions localized to the FOXP3 domain(aa238-335)and the FXR1 domain(aa82-222),respectively.Conclusively,THA modulates the gut microbiota and metabolite profiles towards a more beneficial composition,enhances gut barrier function,promotes the differentiation of FOXP3+Tregs and curbs pro-inflammatory pathways.
基金supported by Chinese Association of Preventive Medicine-Vaccine and Immunization Youth Talent Support Project(CPMAQT-YM0314)Shandong medical and health science and technology development plan project(202012050267)Shandong Center for Disease Control and Prevention-Youth Innovation Fund Project(QC-202301).
文摘Background:This study investigated the relationship between meteorological factors and daily outpatient visits to rabies post-exposure prophylaxis clinics to inform animal injury prevention strategies.Methods:Daily outpatient visit data from rabies post-exposure prophylaxis clinics in Jinan and corresponding meteorological data were collected from January 1,2020,to December 31,2022.A generalized additive model was used to quantitatively assess the relationship between these factors.A total of 202,010 patients visited these clinics during this period.Results:Daily mean,maximum,and minimum temperatures,and relative humidity were positively associated with outpatient visits.A 1°C increase in mean,maximum,and minimum temperatures corresponded to increases in daily visits of 1.65%(95%Confidence Interval(CI):1.55–1.76),1.59%(95%CI:1.50–1.69),and 1.27%(95%CI:1.17–1.36)respectively.Each 1%increase in relative humidity was associated with a 0.18%(95%CI:0.15–0.20)increase in visits.Mean pressure was negatively associated with outpatient visits,the outpatient visits decreased by 0.91%(95%CI:−1.71 to−0.11)for every 1 kPa increased in mean pressure.Conclusion:The change of meteorological factors will lead to the increase of outpatient visits in rabies exposure treatment clinic.
基金supported by the China Postdoctoral Science Foundation(Grant No.2024MF750281)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230326)+1 种基金the Natural Science Foundation Project of Sichuan Province(Grant No.2025ZNSFSC1170)Sichuan Science and Technology Program(Grant No.2023ZYD0158).
文摘Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process.
基金financially supported by Excellent Young Science Fund for National Natural Science Foundation of China(82022033)Sichuan Science and Technology Program(2024NSFJQ0048)+3 种基金National Natural Science Foundation of China(81902422)Jiangsu Natural Science Foundation(No.BK20231245)Program of Jiangsu Commission of Health(No.M2020024)Program of Yangzhou Commission of Health(No.2023-2-01,2024-2-08).
文摘Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
基金supported by the scientific research project of Baishanzu National Park(2023JBGS07)the National Natural Science Foundation of China(31970447,32370500)the Special Funds for Scientific Research of Postdoctoral Work Station Assessment in Zhejiang Province,China(2023).
文摘Two new species in the genus Aglaostigma Kirby(Hymenoptera:Tenthredinidae)are described and illustrated from Mts.Nanling,China:A.luoyoulaii Li,Liu&Wei sp.nov.and A.mengmeng Li&Wei sp.nov.