Due to the need to update the current guidelines for highway design to focus on safety, this study sought to build an accident prediction model using a Geographic Information System (GIS) for single-lane rural highway...Due to the need to update the current guidelines for highway design to focus on safety, this study sought to build an accident prediction model using a Geographic Information System (GIS) for single-lane rural highways, with a minimum of statistically significant variables, adequate to the Brazilian reality, and improve accident prediction for places with similar characteristics. A database was created to associate the accident records with the geometric parameters of the highway and to fill in the gaps left by the absence of geometric highway plans through geometric reconstitution or semi-automatic extraction of highways using satellite images. The Generalized Estimating Equation (GEE) method was applied to estimate the coefficients of the model, assuming negative distribution of the binomial error for the count of observed accidents. The accident frequency and annual average daily traffic (AADT) were analyzed, along with the spatial and geometric characteristics of 215 km of federal single-lane rural highways between 2007 and 2016. The GEE procedure was applied to two models having three variations of distinct homogeneous segmentation, two based on segments and one based on the kernel density estimator. To assess the effect of constant traffic, two more variations of the models using AADT as an offset variable were considered. The predominant correlation structure in the models was the exchangeable. The principal contributing factors for the occurrence of collisions were the radius of the horizontal curve, the grade, segment length, and the AADT. The study produced clear indicators for the design parameters of roadways that influence the safety performance of rural highways.展开更多
Finger-joint lumber is a sustainable building product commercialized as a structural solution for beams,pillars and other thin flat load-bearing elements.This study aims to study finger-joint lumber and its industry t...Finger-joint lumber is a sustainable building product commercialized as a structural solution for beams,pillars and other thin flat load-bearing elements.This study aims to study finger-joint lumber and its industry to promote this engineered wood product.The first research stage assessed the collection of publications on fingerjoint lumber available globally,in which a structured protocol was developed to prospect studies based on two complementary methodologies:PRISMA 2020 using Scopus and Web of Science databases,and Snowball using both forward and backward models to complete with additional literature.The second research stage assessed finger-joint lumber manufacturers,in which companies were globally prospected using Google search engine and their corporate websites were profoundly analyzed using a structured script to collect information.Literary approaches have provided structural performance and bonding quality of finger-jointing.In the review,we provide a global overview and data regarding the current stage and future directions of finger-joint lumber for industrialized construction.Regarding this structural product,we review the main resources,material preparation and processing,and automated production.Mainly active in Europe and already present in 38 nations across five continents,we survey a finger-joint lumber industry comprising 186 producers controlling 214 manufacturing operations worldwide.The vast majority of this industry has exported linear engineered solutions in different dimensions,certified as to compliance with the origins of their bioresources and the European Union requirements,to markets exposed to 24 languages in order to meet commercial applications such as single-story houses,townhouses,roof structures,and hangars.展开更多
文摘Due to the need to update the current guidelines for highway design to focus on safety, this study sought to build an accident prediction model using a Geographic Information System (GIS) for single-lane rural highways, with a minimum of statistically significant variables, adequate to the Brazilian reality, and improve accident prediction for places with similar characteristics. A database was created to associate the accident records with the geometric parameters of the highway and to fill in the gaps left by the absence of geometric highway plans through geometric reconstitution or semi-automatic extraction of highways using satellite images. The Generalized Estimating Equation (GEE) method was applied to estimate the coefficients of the model, assuming negative distribution of the binomial error for the count of observed accidents. The accident frequency and annual average daily traffic (AADT) were analyzed, along with the spatial and geometric characteristics of 215 km of federal single-lane rural highways between 2007 and 2016. The GEE procedure was applied to two models having three variations of distinct homogeneous segmentation, two based on segments and one based on the kernel density estimator. To assess the effect of constant traffic, two more variations of the models using AADT as an offset variable were considered. The predominant correlation structure in the models was the exchangeable. The principal contributing factors for the occurrence of collisions were the radius of the horizontal curve, the grade, segment length, and the AADT. The study produced clear indicators for the design parameters of roadways that influence the safety performance of rural highways.
基金supported by the Scientific Grant Agency of the Ministry of Education,Science,Research and Sport of the Slovak Republic(VEGA)with VEGA 1/0228/24 Project and the Cultural and Educational Grant Agency Ministry of Education,Science,Research and Sport of the Slovak Republic(KEGA)with KEGA 017TUKE-4/2024 ProjectBrazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES),with finance code 001.
文摘Finger-joint lumber is a sustainable building product commercialized as a structural solution for beams,pillars and other thin flat load-bearing elements.This study aims to study finger-joint lumber and its industry to promote this engineered wood product.The first research stage assessed the collection of publications on fingerjoint lumber available globally,in which a structured protocol was developed to prospect studies based on two complementary methodologies:PRISMA 2020 using Scopus and Web of Science databases,and Snowball using both forward and backward models to complete with additional literature.The second research stage assessed finger-joint lumber manufacturers,in which companies were globally prospected using Google search engine and their corporate websites were profoundly analyzed using a structured script to collect information.Literary approaches have provided structural performance and bonding quality of finger-jointing.In the review,we provide a global overview and data regarding the current stage and future directions of finger-joint lumber for industrialized construction.Regarding this structural product,we review the main resources,material preparation and processing,and automated production.Mainly active in Europe and already present in 38 nations across five continents,we survey a finger-joint lumber industry comprising 186 producers controlling 214 manufacturing operations worldwide.The vast majority of this industry has exported linear engineered solutions in different dimensions,certified as to compliance with the origins of their bioresources and the European Union requirements,to markets exposed to 24 languages in order to meet commercial applications such as single-story houses,townhouses,roof structures,and hangars.