A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep aval...A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investiga...Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.展开更多
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Tr...Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.展开更多
In recent decades, log system management has been widely studied fordata security management. System abnormalities or illegal operations can befound in time by analyzing the log and provide evidence for intrusions. In...In recent decades, log system management has been widely studied fordata security management. System abnormalities or illegal operations can befound in time by analyzing the log and provide evidence for intrusions. In orderto ensure the integrity of the log in the current system, many researchers havedesigned it based on blockchain. However, the emerging blockchain is facing significant security challenges with the increment of quantum computers. An attackerequipped with a quantum computer can extract the user's private key from thepublic key to generate a forged signature, destroy the structure of the blockchain,and threaten the security of the log system. Thus, blind signature on the lattice inpost-quantum blockchain brings new security features for log systems. In ourpaper, to address these, firstly, we propose a novel log system based on post-quantum blockchain that can resist quantum computing attacks. Secondly, we utilize apost-quantum blind signature on the lattice to ensure both security and blindnessof log system, which makes the privacy of log information to a large extent.Lastly, we enhance the security level of lattice-based blind signature under therandom oracle model, and the signature size grows slowly compared with others.We also implement our protocol and conduct an extensive analysis to prove theideas. The results show that our scheme signature size edges up subtly comparedwith others with the improvement of security level.展开更多
In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of ...In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.展开更多
Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC lo...Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC located before the CO-OFDM receiver includes an optical phase conjugation(OPC)unit and a subsequent 80-km-high nonlinear fiber(HNLF)as a fiber nonlinearity compensator.The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier.The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient.Simulation results show that the nonlinear threshold(NLT)(for Q>10 dB)can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single−channel 40-Gb/s CO-OFDM system with periodic dispersion maps.In the 50-GHz channel spacing wavelength-division-multiplexing system,the NLT increases by 1.1 dB,equating to a 0.7 dB improvement for the maximum Q factor.展开更多
Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic...Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic nonlinear activa-tion function(NAF),progress on efficient and easily implementable optical nonlinear activation function(ONAF)was barely reported.To address this issue,we proposed a programmable,low-loss ONAF device based on a silicon micro-ring resonator capped with the Antimony selenide(Sb_(2)Se_(3))thin films,and with indium tin oxide(ITO)used as the microheater.Leveraging our self-developed phase-transformation kinetic and optical models,we successfully simulated the phase-transition behavior of Sb_(2)Se_(3)and three different ONAFs—ELU,ReLU,and radial basis function(RBF)were achieved according to discernible optical responses of proposed devices under different phase-change extents.Classification results from the Fashion MNIST dataset demonstrated that these ONAFs can be considered as appropriate substitutes for traditional NAF.This indicated the bright prospect of the proposed device for nonlinear activation function in future photonic neural networks.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these network...Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The Page Rank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-Page Rank(C-PR), which integrates network curvature and Page Rank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node's influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and Page Rank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis.展开更多
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res...Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.展开更多
In the reading process and after reading of the scientific and technological English literature for postgraduates of engineering, there are several barriers like the understanding of the vocabulary, the analyzing the ...In the reading process and after reading of the scientific and technological English literature for postgraduates of engineering, there are several barriers like the understanding of the vocabulary, the analyzing the complex sentences and the grasping the whole texts. This paper tries to investigate the using condition of interactive reading strategy in reading scientific and technological English literature of postgraduates of engineering. The study reveals that postgraduates of engineering frequently using some of strategies of the interactive reading strategy, but the overall using condition is only in the average level, and is not so flexible.展开更多
In the immediate postpartum period, women need to be observed by the obstetric nurse so that measures can be taken to prevent hemorrhages and reduce its complications. Most maternal deaths from hemorrhage are preventa...In the immediate postpartum period, women need to be observed by the obstetric nurse so that measures can be taken to prevent hemorrhages and reduce its complications. Most maternal deaths from hemorrhage are preventable with support measures for clinical practice, such as: guiding protocols, training of professionals, organization and management of health services and provision of adequate conditions for the parturition process. Objective: To validate Rangel’s instrument with its application in the Maternity Ward of the General Hospital of Huambo, Angola. Methodology: This is a descriptive study with a quantitative approach. This is the sixth stage, called pre-test, of the Translation and Cultural Adaptation process. This instrument was sent for evaluation by the validators using the electronic data collection form named Google forms, with a seven-point Likert-type scale (from 7—totally agree to 1—totally disagree). The analysis was performed with the Cronbach’s Alpha coefficient index (>0.91) and the Content Validity Index (CVI > 0.98). Results: Of the 10 items of evaluation criteria of the instrument analyzed by the 20 validators, 100% of them obtained a Cronbach’s Alpha index rating of 0.91: clarity;coherence;scientific writing;relevance;sequence;uniqueness and updating. Coverage, item criticality and objectivity reached a Cronbach’s Alpha of 0.95. The Content Validity Index was 0.95 for coverage, coherence, item criticality, scientific writing, relevance and updating. Conclusion: Rangel’s instrument for nursing care aimed at preventing and controlling hemorrhage in the third period of birth, translated into Angolan Portuguese and validated by nurses, through the statistical results obtained in the validation, was considered reliable and necessary for clinical nursing practice in Huambo, Angola. .展开更多
The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devic...The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.展开更多
Objectives:Teachers are facing unprecedented new challenges leading them to face an increasing number of tasks that are not part of their job,as well as having to cope with the additional skills acquisition that comes...Objectives:Teachers are facing unprecedented new challenges leading them to face an increasing number of tasks that are not part of their job,as well as having to cope with the additional skills acquisition that comes with non-traditional forms of teaching and learning,and increased work pressure leading to an increase in the rate of teachers leaving the profession.Therefore,this study aims to explore the mechanism of the career calling on job burnout through career adaptability and work engagement.Methods:This study conducted a cross-sectional survey of 465 primary and secondary school teachers(PSST)in China's Mainland from the perspective of work adjustment and used structural equation modeling(SEM)to examine the mediating roles of career adaptability and work engagement in the relationship between teachers’career calling and job burnout.Results:The results show that PSSTs are above average in career calling,career adaptability,and work engagement,while job burnout is below average.A significant positive or negative correlation exists between career calling,career adaptability,work engagement,and job burnout.The result of path analysis indicates that career adaptability and work engagement exert an indirect influence on the job burnout of PSST through three paths:namely,the independent intermediary role of career adaptability(EV=−0.144),the independent intermediary role of work engagement(EV=0.172)and the chain intermediary role of the two(EV=0.176).Conclusion:This study emphasizes the importance of career adaptability and work engagement in teacher development in regulating career calling and job burnout.Therefore,on the one hand,we think that if managers want to reduce teachers’job burnout,they need to pay more attention to teachers’career adaptability and work engagement,rather than relying solely on teachers’career calling.On the other hand,it is to remind teachers not to rely on their adjustment to adapt to the work,but also to need outside help as much as possible.展开更多
Although it has a significant advantage in gain properties,the lack of selective etching processes hinders ZnO lasing in on-chip applications.Herein,the circular ZnO microdisk pivoted on Si substrate is fabricated thr...Although it has a significant advantage in gain properties,the lack of selective etching processes hinders ZnO lasing in on-chip applications.Herein,the circular ZnO microdisk pivoted on Si substrate is fabricated through depositing ZnO on patterned silicon on an insulator(SOI)substrate.The cavity structure,morphology,and photoluminescence(PL)properties are studied systematically.The cavity shows a well-defined circular structure with oxygen vacancies.Under the synergistic action of surface tension and stress,the ZnO microdisk shows a unique toroid structure with a high sidewall surface finish.The ZnO microcavity(8μm in diameter)shows optically pumped whispering gallery modes(WGMs)lasing in the ultraviolet region with a Q factor exceeding 1300.More interestingly,the quality of the toroid ZnO microdisk cavity is high enough to support the bandgap renormalization(BGR)phenomenon.With the increasing pumping power,the lasing spectra will be modulated.The lasing spectrum undergoes a Burstein-Moss(BM)effect-induced blueshift and an electron-hole plasma(EHP)effect-induced redshift.展开更多
Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antib...Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antibiotic resistance,leading to suboptimal treatment outcomes.Thus,it is challenging to remove the organic biofilms from root canals.In recent years,light-responsive therapy,with deeper tissue penetration than traditional treatments,has emerged as an effective RCT modality.Herein,this review summarizes the recent development of light-responsive nanomaterials for biofilm removal in RCT.The light-responsive nanomaterials and the corresponding therapeutic methods in RCT,including photodynamic therapy(PDT),photothermal therapy(PTT),and laser-activated therapy,are highlighted.Finally,the challenges that light-responsive nanomaterials and treatment modalities will encounter to conquer the biofilm in future RCT are discussed.This review is believed to significantly accelerate the future development of light-responsive nanomaterials for RCT from bench to bedside.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62171233the Natural Science Foundation of China,Jiangsu Province under Grant BK20241891the Jiangsu Province Graduate Research and Practice Innovation Plan under Grants SJCX24_0313 and KYCX24_1169。
文摘A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金jointly supported by the National Natural Science Foundation of China(No.61175008)State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System of China(No.CEMEE2014K0301A)the Natural Science Foundation of Jiangsu Province of China(No.BK20140896)
文摘Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50942021 and 11075314)the Fundamental Research Fund for the Central Universities (Grant No. CDJXS10102207)
文摘Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.
基金supported by the NSFC(Grant Nos.92046001,61962009)JSPS KAKENHI Grant Number JP20F20080+3 种基金the Natural Science Foundation of Inner Mongolia(2021MS06006)Baotou Kundulun District Science and technology plan project(YF2020013)Inner Mongolia discipline inspection and supervision big data laboratory open project fund(IMDBD2020020)the Scientific Research Foundation of North China University of Technology.
文摘In recent decades, log system management has been widely studied fordata security management. System abnormalities or illegal operations can befound in time by analyzing the log and provide evidence for intrusions. In orderto ensure the integrity of the log in the current system, many researchers havedesigned it based on blockchain. However, the emerging blockchain is facing significant security challenges with the increment of quantum computers. An attackerequipped with a quantum computer can extract the user's private key from thepublic key to generate a forged signature, destroy the structure of the blockchain,and threaten the security of the log system. Thus, blind signature on the lattice inpost-quantum blockchain brings new security features for log systems. In ourpaper, to address these, firstly, we propose a novel log system based on post-quantum blockchain that can resist quantum computing attacks. Secondly, we utilize apost-quantum blind signature on the lattice to ensure both security and blindnessof log system, which makes the privacy of log information to a large extent.Lastly, we enhance the security level of lattice-based blind signature under therandom oracle model, and the signature size grows slowly compared with others.We also implement our protocol and conduct an extensive analysis to prove theideas. The results show that our scheme signature size edges up subtly comparedwith others with the improvement of security level.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.
基金by the National High-Tech Research and Development Program under Grant No 2009AA01A345the National Basic Research Program under Grant No2011CB302702the National Natural Science Foundation of China under Grant No 60932004.
文摘Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC located before the CO-OFDM receiver includes an optical phase conjugation(OPC)unit and a subsequent 80-km-high nonlinear fiber(HNLF)as a fiber nonlinearity compensator.The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier.The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient.Simulation results show that the nonlinear threshold(NLT)(for Q>10 dB)can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single−channel 40-Gb/s CO-OFDM system with periodic dispersion maps.In the 50-GHz channel spacing wavelength-division-multiplexing system,the NLT increases by 1.1 dB,equating to a 0.7 dB improvement for the maximum Q factor.
基金supported by the National Natural Science Foundation of China(Grant Nos.62104114,62404111)Natural Science Foundation of Jiangsu Province(Grant Nos.BK20240635,BZ2021031)+4 种基金Opening Project of Advanced Integrated Circuit Package and Testing Research Center of Jiangsu Province(Grant No.NTIKFJJ202303)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.24KJB510025)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant Nos.NY223157,NY223156)Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224140)Project funded by China Postdoctoral Science Foundation(Grant No.2023M732916).
文摘Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic nonlinear activa-tion function(NAF),progress on efficient and easily implementable optical nonlinear activation function(ONAF)was barely reported.To address this issue,we proposed a programmable,low-loss ONAF device based on a silicon micro-ring resonator capped with the Antimony selenide(Sb_(2)Se_(3))thin films,and with indium tin oxide(ITO)used as the microheater.Leveraging our self-developed phase-transformation kinetic and optical models,we successfully simulated the phase-transition behavior of Sb_(2)Se_(3)and three different ONAFs—ELU,ReLU,and radial basis function(RBF)were achieved according to discernible optical responses of proposed devices under different phase-change extents.Classification results from the Fashion MNIST dataset demonstrated that these ONAFs can be considered as appropriate substitutes for traditional NAF.This indicated the bright prospect of the proposed device for nonlinear activation function in future photonic neural networks.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 61672298 and 62373197)the Major Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province,China (Grant No. 2018SJZDI142)the Postgraduate Research & Practice Innovation Program of Jiangsu Province,China (Grant No. KYCX23 1045)。
文摘Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The Page Rank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-Page Rank(C-PR), which integrates network curvature and Page Rank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node's influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and Page Rank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis.
基金supported in part by the National Natural Science Foundation of China under Grants U21B2005,62201105,62331017,U24B20134,62222103,and 62025105in part by the Chongqing Municipal Education Commission under Grants KJQN202400621,KJQN202100643,and KJZDK202400608+1 种基金in part by the China Postdoctoral Science Foundation under Grant 2021M700563in part by the Chongqing Postdoctoral Funding Project under Grant 2021XM3052。
文摘Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.
文摘In the reading process and after reading of the scientific and technological English literature for postgraduates of engineering, there are several barriers like the understanding of the vocabulary, the analyzing the complex sentences and the grasping the whole texts. This paper tries to investigate the using condition of interactive reading strategy in reading scientific and technological English literature of postgraduates of engineering. The study reveals that postgraduates of engineering frequently using some of strategies of the interactive reading strategy, but the overall using condition is only in the average level, and is not so flexible.
文摘In the immediate postpartum period, women need to be observed by the obstetric nurse so that measures can be taken to prevent hemorrhages and reduce its complications. Most maternal deaths from hemorrhage are preventable with support measures for clinical practice, such as: guiding protocols, training of professionals, organization and management of health services and provision of adequate conditions for the parturition process. Objective: To validate Rangel’s instrument with its application in the Maternity Ward of the General Hospital of Huambo, Angola. Methodology: This is a descriptive study with a quantitative approach. This is the sixth stage, called pre-test, of the Translation and Cultural Adaptation process. This instrument was sent for evaluation by the validators using the electronic data collection form named Google forms, with a seven-point Likert-type scale (from 7—totally agree to 1—totally disagree). The analysis was performed with the Cronbach’s Alpha coefficient index (>0.91) and the Content Validity Index (CVI > 0.98). Results: Of the 10 items of evaluation criteria of the instrument analyzed by the 20 validators, 100% of them obtained a Cronbach’s Alpha index rating of 0.91: clarity;coherence;scientific writing;relevance;sequence;uniqueness and updating. Coverage, item criticality and objectivity reached a Cronbach’s Alpha of 0.95. The Content Validity Index was 0.95 for coverage, coherence, item criticality, scientific writing, relevance and updating. Conclusion: Rangel’s instrument for nursing care aimed at preventing and controlling hemorrhage in the third period of birth, translated into Angolan Portuguese and validated by nurses, through the statistical results obtained in the validation, was considered reliable and necessary for clinical nursing practice in Huambo, Angola. .
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+2 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067).
文摘The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.
基金funded by Humanities and Social Sciences Foundation and Natural Science Foundation of Nanjing University of Posts and Telecommunications(NYY222055,NY224176)General Subject of Educational Science Planning in Jiangsu Province(C/2024/01/76)National Natural Science Foundation of China(62307025).
文摘Objectives:Teachers are facing unprecedented new challenges leading them to face an increasing number of tasks that are not part of their job,as well as having to cope with the additional skills acquisition that comes with non-traditional forms of teaching and learning,and increased work pressure leading to an increase in the rate of teachers leaving the profession.Therefore,this study aims to explore the mechanism of the career calling on job burnout through career adaptability and work engagement.Methods:This study conducted a cross-sectional survey of 465 primary and secondary school teachers(PSST)in China's Mainland from the perspective of work adjustment and used structural equation modeling(SEM)to examine the mediating roles of career adaptability and work engagement in the relationship between teachers’career calling and job burnout.Results:The results show that PSSTs are above average in career calling,career adaptability,and work engagement,while job burnout is below average.A significant positive or negative correlation exists between career calling,career adaptability,work engagement,and job burnout.The result of path analysis indicates that career adaptability and work engagement exert an indirect influence on the job burnout of PSST through three paths:namely,the independent intermediary role of career adaptability(EV=−0.144),the independent intermediary role of work engagement(EV=0.172)and the chain intermediary role of the two(EV=0.176).Conclusion:This study emphasizes the importance of career adaptability and work engagement in teacher development in regulating career calling and job burnout.Therefore,on the one hand,we think that if managers want to reduce teachers’job burnout,they need to pay more attention to teachers’career adaptability and work engagement,rather than relying solely on teachers’career calling.On the other hand,it is to remind teachers not to rely on their adjustment to adapt to the work,but also to need outside help as much as possible.
文摘Although it has a significant advantage in gain properties,the lack of selective etching processes hinders ZnO lasing in on-chip applications.Herein,the circular ZnO microdisk pivoted on Si substrate is fabricated through depositing ZnO on patterned silicon on an insulator(SOI)substrate.The cavity structure,morphology,and photoluminescence(PL)properties are studied systematically.The cavity shows a well-defined circular structure with oxygen vacancies.Under the synergistic action of surface tension and stress,the ZnO microdisk shows a unique toroid structure with a high sidewall surface finish.The ZnO microcavity(8μm in diameter)shows optically pumped whispering gallery modes(WGMs)lasing in the ultraviolet region with a Q factor exceeding 1300.More interestingly,the quality of the toroid ZnO microdisk cavity is high enough to support the bandgap renormalization(BGR)phenomenon.With the increasing pumping power,the lasing spectra will be modulated.The lasing spectrum undergoes a Burstein-Moss(BM)effect-induced blueshift and an electron-hole plasma(EHP)effect-induced redshift.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20200092)。
文摘Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antibiotic resistance,leading to suboptimal treatment outcomes.Thus,it is challenging to remove the organic biofilms from root canals.In recent years,light-responsive therapy,with deeper tissue penetration than traditional treatments,has emerged as an effective RCT modality.Herein,this review summarizes the recent development of light-responsive nanomaterials for biofilm removal in RCT.The light-responsive nanomaterials and the corresponding therapeutic methods in RCT,including photodynamic therapy(PDT),photothermal therapy(PTT),and laser-activated therapy,are highlighted.Finally,the challenges that light-responsive nanomaterials and treatment modalities will encounter to conquer the biofilm in future RCT are discussed.This review is believed to significantly accelerate the future development of light-responsive nanomaterials for RCT from bench to bedside.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.