Cyanine dyes of zero/bis-zero methine incorporating imid-azo(1,2-a)Pyridine (quinoline) or pyrazino(1,2-a)pyridine (quinoline) with stable C-N bond were synthesized using keto-oxime methylene C-link heterocyclic quate...Cyanine dyes of zero/bis-zero methine incorporating imid-azo(1,2-a)Pyridine (quinoline) or pyrazino(1,2-a)pyridine (quinoline) with stable C-N bond were synthesized using keto-oxime methylene C-link heterocyclic quaternary salts [1-phenyl-3-methyl-pyrazolino-4-keto-oxime-α-methylene-bis-pyridin-(quinoin)-1(4)-di-ium-iodide(ethiodide) salts and 1-phenyl-3-methyl-pyrazolino- 4-ketooxime-α-methylene-N-2-methyl-bis pyridin (quinoin)-1(4)-di-ium-iodide(ethiodide) salts]. Such heterocyclic precursors and related dyes were identified by elemental and spectral analyses. The absorption spectra properties of such dyes were investigated in 95% Ethanol to attempt and throw some light on the influence of such new heterocyclic nuclei and to compare or evaluate spectral behaviors. The absorption spectra of dyes in different pure solvents were examined in the visible region showing solvatochromism and the colour changes of dyes with solvents having different polarities. This permits a selection of the optimal solvent (fractional solvent) when such dyes are applied as photosensitizers. The spectral behavior of some selected newly synthesized cyanine dyes is observed in mixed solvents of different polarities and progressively increasing quantities of one solvent over the other were studied and showed an increase in the absorbance of CT band with increasing proportion of that solvent. Evidence for hydrogen bond formation between the solute molecules and solvent molecules allows measurement of certain energies such as hydrogen bonding, orientation, and free energies.展开更多
Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In ...Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.展开更多
文摘Cyanine dyes of zero/bis-zero methine incorporating imid-azo(1,2-a)Pyridine (quinoline) or pyrazino(1,2-a)pyridine (quinoline) with stable C-N bond were synthesized using keto-oxime methylene C-link heterocyclic quaternary salts [1-phenyl-3-methyl-pyrazolino-4-keto-oxime-α-methylene-bis-pyridin-(quinoin)-1(4)-di-ium-iodide(ethiodide) salts and 1-phenyl-3-methyl-pyrazolino- 4-ketooxime-α-methylene-N-2-methyl-bis pyridin (quinoin)-1(4)-di-ium-iodide(ethiodide) salts]. Such heterocyclic precursors and related dyes were identified by elemental and spectral analyses. The absorption spectra properties of such dyes were investigated in 95% Ethanol to attempt and throw some light on the influence of such new heterocyclic nuclei and to compare or evaluate spectral behaviors. The absorption spectra of dyes in different pure solvents were examined in the visible region showing solvatochromism and the colour changes of dyes with solvents having different polarities. This permits a selection of the optimal solvent (fractional solvent) when such dyes are applied as photosensitizers. The spectral behavior of some selected newly synthesized cyanine dyes is observed in mixed solvents of different polarities and progressively increasing quantities of one solvent over the other were studied and showed an increase in the absorbance of CT band with increasing proportion of that solvent. Evidence for hydrogen bond formation between the solute molecules and solvent molecules allows measurement of certain energies such as hydrogen bonding, orientation, and free energies.
基金Department of Textile Engineering, Chemistry and Science at North Carolina State University for the financial support
文摘Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.