Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-pr...Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-property labels,and limited accessibility,hindering system-atic modeling across property prediction tasks.Here,we present OpenPoly,a curated experimental polymer database derived from extensive lit-erature mining and manual validation,comprising 3985 unique polymer-property data points spanning 26 key properties.We further develop a multi-task benchmarking framework that evaluates property prediction using four encoding methods and eight representative models.Our re-sults highlight that the optimized degree-of-polymerization encoding coupled with Morgan fingerprints achieves an optimal trade-off between computational cost and accuracy.In data-scarce condition,XGBoost outperforms deep learning models on key properties such as dielectric con-stant,glass transition temperature,melting point,and mechanical strength,achieving R2 scores of 0.65-0.87.To further showcase the practical utility of the database,we propose potential polymers for two energy-relevant applications:high temperature polymer dielectrics and fuel cell membranes.By offering a consistent and accessible benchmark and database,OpenPoly paves the way for more accurate polymer-property modeling and fosters data-driven advances in polymer genome engineering.展开更多
The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block ...The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.展开更多
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ...Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.展开更多
In this work,a unique model is proposed for predicting the tensile strength of binary polymer blends considering the effects of polymer/polymer interface and the morphological variation of the system.The modeling was ...In this work,a unique model is proposed for predicting the tensile strength of binary polymer blends considering the effects of polymer/polymer interface and the morphological variation of the system.The modeling was performed based on the combination of analytical and artificial neural network (ANN) modeling methods.For the analytical part,Kolarik’s model was developed in accordance with the system requirements and ANN was simultaneously involved in order to interpret some effective model parameters using the tensile test result of an actual sample (e.g.the yield strength and thickness of the interface,etc.).Furthermore,the model accuracy was evaluated by comparing the tensile test results of differently preparediPP/PA and PS/PMMA blend samples and also some other data from literature with the model predictions.It was revealed that the designed ANN perfectly elevates the capability of the analytical section in order to predict the tensile strength of binary polymer blends with different compositions (prediction error <10%).展开更多
Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)penta...Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)pentaerythritol (PETMP) (2:1 molar ratio) using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator. The antibacterial activity of the coatings was tested against Staphylococcus aureus (ATCC 292130) and Escherichia coli (ATCC 25922) by the dynamic shake method. The evaluation results revealed the antibacterial polymer coatings exhibited excellent inhibitory activity against S. aureus and E. coil, especially for S. aureus.展开更多
Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as ...Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as antibacterial monomer and triallyl cyanurate (TAC) as the crosslinker. These films with different content of ADIm were characterized by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and pencil hardness. It was found that the mechanical and thermal properties of these films were largely influenced by the content of ADIm in the films. Films with imidazolium bromide groups displayed excellent antimicrobial activity against Staphylococcus aureus with 100% killing efficiency.展开更多
Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms und...Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.展开更多
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating proce...Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.展开更多
Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyph...Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyphenyl)-2,3- phthalazinone, 4,4'-difluorobenzophenone and 3,3'-disulfonate-4,4'-difluorobenzophenone. The chemical structure of SPPEK-DMs was characterized by FTIR and 1H-NMR. Thermal stability of SPPEK-DMs was characterized by the thermogravimetric analysis. The membranes prepared from SPPEK-DMs exhibited ion exchange capacities (IEC) ranging from 0.93 mmol.g-1 to 1.86 mmol.g-1. Water uptake, swelling, oxidative stability and methanol permeability of SPPEK- DMs membranes were investigated. SPPEK-DMs membranes exhibited high oxidative stability. The methanol permeability values of SPPEK-DMs membranes were in the range 5.15× 10^-8-6.61×10^-7 cm^2.s-1, which was much lower than those of Nafion117. The proton conductivity of SPPEK-DM40 membranes was 1.1 ×10^-2 S.cm^-1 at 70℃.展开更多
2,4-Dichlorophenol was removed from wasterwater using a new hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber membrane by vacuum membrane distillation (VMD).
Biobased aromatic-aliphatic polyols were previously synthesized from a thermal thiol-ene reaction of propoxylated cardanol with 2-mercaptoethanol(ME)in the presence of azobisisobutyronitrile(AIBN)as a radical initiato...Biobased aromatic-aliphatic polyols were previously synthesized from a thermal thiol-ene reaction of propoxylated cardanol with 2-mercaptoethanol(ME)in the presence of azobisisobutyronitrile(AIBN)as a radical initiator.Cardanol used for this purpose was obtained as a dark-brown liquid(Gardner Color Reference^18).The photochemical thiol-ene reaction can also be used to prepare aromatic-aliphatic polyols by employing cardanol.Via the photochemical thiol-ene reaction,2-mercaptoethanol was added successfully to C=C double bond of cardanol,suggesting that phenolic group may not play an inhibitory role in the radical thiol-ene reaction.However,we preferred to alkoxylate the phenolic hydroxyl group of cardanol,which is much more reactive with isocyanates than phenolic hydroxyls,to generate a new aliphatic hydroxyl group.Furthermore,the functionality of polyols was also improved by two methods:1)using 1-thio-glycerol instead of 2-mercaptoethanol and 2)using alkoxylated cardanol with glycidol(Cardanol-GLY)instead of propoxylated cardanol(Cardanol-PO).These polyols were then used in preparation of rigid polyurethane foams that can be useful in various applications such as insulation of freezers,pipes and storage tanks in food and chemical industries.展开更多
Polyimide(PI)composite films were synthesized incorporating amino modified silicon nitride(Si_(3)N_(4))nanoparticles into PI matrix via in situ polymerization technique.The mechanical and thermal performances as well ...Polyimide(PI)composite films were synthesized incorporating amino modified silicon nitride(Si_(3)N_(4))nanoparticles into PI matrix via in situ polymerization technique.The mechanical and thermal performances as well as the hydrophobic properties of the as prepared composite films were investigated with respect to the dosage of the filler in the PI matrix.According to Thermogravimetric(TGA)analysis,meaningful improvements were achieved in T5(5%weight loss temperature)and T10(10%weight loss temperature)up to 54.1℃ and 52.4℃,respectively when amino functionalized nano Si_(3)N_(4) particles were introduced into the PI matrix.The differential scanning calorimetry(DSC)results revealed that the glass transition temperature(Tg)of the composites was considerably enhanced up to 49.7℃ when amino functionalized Si_(3)N_(4) nanoparticles were incorporated in the PI matrix.Compared to the neat PI,the PI/Si_(3)N_(4) nanocomposites exhibited very high improvement in the tensile strength as well as Young’s modulus up to 105.4%and 138.3%,respectively.Compared to the neat PI,the composites demonstrated highly decreased water absorption behavior which showed about 68.1%enhancement as the content of the nanoparticles was increased to 10 wt%.The SEM(Scanning electron microscope)images confirmed that the enhanced thermal,mechanical and water proof properties are essentially attributed to the improved compatibility of the filler with the matrix and hence,enhanced distribution inside the matrix because of the amino groups on the surface of Si_(3)N_(4) nanoparticles obtained from surface functionalization.展开更多
Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the at...Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).展开更多
A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the...A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.展开更多
Aromatic-aliphatic polyols were obtained previously from the thiol-ene reactions of propoxylated cardanol with hydroxyalkyl mercaptans;these aromatic-aliphatic polyols were then utilized in the preparation of rigid po...Aromatic-aliphatic polyols were obtained previously from the thiol-ene reactions of propoxylated cardanol with hydroxyalkyl mercaptans;these aromatic-aliphatic polyols were then utilized in the preparation of rigid polyurethane foams with excellent properties.The current work describes a variant of cardanol polyol synthesis by thiol-ene reactions in three steps.The first step is propoxylation of cardanol by reacting cardanol with propylene oxide;the second step is mercaptanization of propoxylated cardanol by reacting double bonds with hydrogen sulfide;and the third step involves the addition of the thiol groups of mercaptanized propoxylated cardanol to the double bonds of allyl alcohol,glycerol-1-allyl ether,and trimethylolpropane allyl ether.Thus,obtained polyols were characterized by standard analytical methods.Rigid polyurethane foams prepared from these polyols show promising physical-mechanical properties.The rigid polyurethane foams can be used for various applications such as thermo-insulation of freezers,storage tanks and pipes for food and chemical industries,wood substitutes and flotation materials.展开更多
Cardanol is a natural phenol which is obtained from high vacuum distillation of cashew nut shell liquid.It contains a hydrocarbon chain of 15 carbon atoms in the meta position,either with one,two or three nonconjugate...Cardanol is a natural phenol which is obtained from high vacuum distillation of cashew nut shell liquid.It contains a hydrocarbon chain of 15 carbon atoms in the meta position,either with one,two or three nonconjugated double bonds.This article describes thermal thiol-ene reaction to synthesize new cardanol-based polyols for polyurethanes with aromatic-aliphatic structure.Phenolic hydroxyl group was blocked by alkoxylation and 2-mercaptoethanol was added to the double bonds of propoxylated cardanol.The resultant product is a mixture of polyols that may contain one,two,three or four hydroxyl groups,as a function of the number of double bonds reacted with 2-mercaptoethanol.Similar polyols,but with much higher functionality,were also synthesized from condensation of cardanol-based novolacs with formaldehyde.These cardanolbased polyols were further utilized to prepare rigid polyurethane foams(PUs)with excellent physical and mechanical properties,useful for various applications in chemical and food industries.展开更多
In situ(α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms ...In situ(α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.展开更多
Zinc oxide is recently being used as a magnetic semiconductor with the introduction of mag-netic elements.In this work,we report phase pure synthesis of Mg and Ni co-substituted ZnO to explore its structure,optical,ma...Zinc oxide is recently being used as a magnetic semiconductor with the introduction of mag-netic elements.In this work,we report phase pure synthesis of Mg and Ni co-substituted ZnO to explore its structure,optical,magnetic and photo-catalytic properties.X-ray di raction analysis reveals the hexagonal wurtzite type structure having P63mc space group without any impurity phase.UV-Vis spectrophotometry demonstrates the variation in bandgap with the addition of Mg and Ni content in ZnO matrix.Magnetic measurements exhibit a clear boosted magnetization in Ni and Mg co-doped compositions with its stable value of bandgap corroborating the structural stability and magnetic tuning for its advanced applications in modern-day spintronic devices.Photo-catalytic measurements performed using methyl green degradation demonstrate an enhanced trend of activity in Mg and Ni co-doped compositions.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 92372126,52373203)the Excellent Young Scientists Fund Program
文摘Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-property labels,and limited accessibility,hindering system-atic modeling across property prediction tasks.Here,we present OpenPoly,a curated experimental polymer database derived from extensive lit-erature mining and manual validation,comprising 3985 unique polymer-property data points spanning 26 key properties.We further develop a multi-task benchmarking framework that evaluates property prediction using four encoding methods and eight representative models.Our re-sults highlight that the optimized degree-of-polymerization encoding coupled with Morgan fingerprints achieves an optimal trade-off between computational cost and accuracy.In data-scarce condition,XGBoost outperforms deep learning models on key properties such as dielectric con-stant,glass transition temperature,melting point,and mechanical strength,achieving R2 scores of 0.65-0.87.To further showcase the practical utility of the database,we propose potential polymers for two energy-relevant applications:high temperature polymer dielectrics and fuel cell membranes.By offering a consistent and accessible benchmark and database,OpenPoly paves the way for more accurate polymer-property modeling and fosters data-driven advances in polymer genome engineering.
基金supported by the National Natural Science Foundation of China(Nos.52394272,22333002,22203018,22303017).
文摘The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.
文摘Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.
文摘In this work,a unique model is proposed for predicting the tensile strength of binary polymer blends considering the effects of polymer/polymer interface and the morphological variation of the system.The modeling was performed based on the combination of analytical and artificial neural network (ANN) modeling methods.For the analytical part,Kolarik’s model was developed in accordance with the system requirements and ANN was simultaneously involved in order to interpret some effective model parameters using the tensile test result of an actual sample (e.g.the yield strength and thickness of the interface,etc.).Furthermore,the model accuracy was evaluated by comparing the tensile test results of differently preparediPP/PA and PS/PMMA blend samples and also some other data from literature with the model predictions.It was revealed that the designed ANN perfectly elevates the capability of the analytical section in order to predict the tensile strength of binary polymer blends with different compositions (prediction error <10%).
文摘Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)pentaerythritol (PETMP) (2:1 molar ratio) using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator. The antibacterial activity of the coatings was tested against Staphylococcus aureus (ATCC 292130) and Escherichia coli (ATCC 25922) by the dynamic shake method. The evaluation results revealed the antibacterial polymer coatings exhibited excellent inhibitory activity against S. aureus and E. coil, especially for S. aureus.
文摘Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as antibacterial monomer and triallyl cyanurate (TAC) as the crosslinker. These films with different content of ADIm were characterized by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and pencil hardness. It was found that the mechanical and thermal properties of these films were largely influenced by the content of ADIm in the films. Films with imidazolium bromide groups displayed excellent antimicrobial activity against Staphylococcus aureus with 100% killing efficiency.
基金supported by National Key Research and Development Program"Advanced Structures and Composite Materials"Special Project[Grant No.2024YFB3712800]the Fundamental Research Funds for the Central Universities[Grant No.DUT22-LAB605]Liaoning Province's"Unveiling the List and Leading the Way"Science and Technology Research and Development Special Project[Grant No.2022JH1/10400043]。
文摘Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
文摘Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.
基金supported by the Natural Science Foundation of Liaoning Province of China(No.20041076)
文摘Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyphenyl)-2,3- phthalazinone, 4,4'-difluorobenzophenone and 3,3'-disulfonate-4,4'-difluorobenzophenone. The chemical structure of SPPEK-DMs was characterized by FTIR and 1H-NMR. Thermal stability of SPPEK-DMs was characterized by the thermogravimetric analysis. The membranes prepared from SPPEK-DMs exhibited ion exchange capacities (IEC) ranging from 0.93 mmol.g-1 to 1.86 mmol.g-1. Water uptake, swelling, oxidative stability and methanol permeability of SPPEK- DMs membranes were investigated. SPPEK-DMs membranes exhibited high oxidative stability. The methanol permeability values of SPPEK-DMs membranes were in the range 5.15× 10^-8-6.61×10^-7 cm^2.s-1, which was much lower than those of Nafion117. The proton conductivity of SPPEK-DM40 membranes was 1.1 ×10^-2 S.cm^-1 at 70℃.
文摘2,4-Dichlorophenol was removed from wasterwater using a new hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber membrane by vacuum membrane distillation (VMD).
文摘Biobased aromatic-aliphatic polyols were previously synthesized from a thermal thiol-ene reaction of propoxylated cardanol with 2-mercaptoethanol(ME)in the presence of azobisisobutyronitrile(AIBN)as a radical initiator.Cardanol used for this purpose was obtained as a dark-brown liquid(Gardner Color Reference^18).The photochemical thiol-ene reaction can also be used to prepare aromatic-aliphatic polyols by employing cardanol.Via the photochemical thiol-ene reaction,2-mercaptoethanol was added successfully to C=C double bond of cardanol,suggesting that phenolic group may not play an inhibitory role in the radical thiol-ene reaction.However,we preferred to alkoxylate the phenolic hydroxyl group of cardanol,which is much more reactive with isocyanates than phenolic hydroxyls,to generate a new aliphatic hydroxyl group.Furthermore,the functionality of polyols was also improved by two methods:1)using 1-thio-glycerol instead of 2-mercaptoethanol and 2)using alkoxylated cardanol with glycidol(Cardanol-GLY)instead of propoxylated cardanol(Cardanol-PO).These polyols were then used in preparation of rigid polyurethane foams that can be useful in various applications such as insulation of freezers,pipes and storage tanks in food and chemical industries.
基金the National Natural Science Foundation of China(51373044)Natural Science Foundation of Heilongjiang Province of China(E2017018).
文摘Polyimide(PI)composite films were synthesized incorporating amino modified silicon nitride(Si_(3)N_(4))nanoparticles into PI matrix via in situ polymerization technique.The mechanical and thermal performances as well as the hydrophobic properties of the as prepared composite films were investigated with respect to the dosage of the filler in the PI matrix.According to Thermogravimetric(TGA)analysis,meaningful improvements were achieved in T5(5%weight loss temperature)and T10(10%weight loss temperature)up to 54.1℃ and 52.4℃,respectively when amino functionalized nano Si_(3)N_(4) particles were introduced into the PI matrix.The differential scanning calorimetry(DSC)results revealed that the glass transition temperature(Tg)of the composites was considerably enhanced up to 49.7℃ when amino functionalized Si_(3)N_(4) nanoparticles were incorporated in the PI matrix.Compared to the neat PI,the PI/Si_(3)N_(4) nanocomposites exhibited very high improvement in the tensile strength as well as Young’s modulus up to 105.4%and 138.3%,respectively.Compared to the neat PI,the composites demonstrated highly decreased water absorption behavior which showed about 68.1%enhancement as the content of the nanoparticles was increased to 10 wt%.The SEM(Scanning electron microscope)images confirmed that the enhanced thermal,mechanical and water proof properties are essentially attributed to the improved compatibility of the filler with the matrix and hence,enhanced distribution inside the matrix because of the amino groups on the surface of Si_(3)N_(4) nanoparticles obtained from surface functionalization.
基金financially supported by National Key Research and Development Program of China(2017YFB0307600)Liaoning Revitalization Talents Program(XLYC1802073)Dalian High-level Talent Innovation Support Program(2019RD08)。
文摘Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).
文摘A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.
文摘Aromatic-aliphatic polyols were obtained previously from the thiol-ene reactions of propoxylated cardanol with hydroxyalkyl mercaptans;these aromatic-aliphatic polyols were then utilized in the preparation of rigid polyurethane foams with excellent properties.The current work describes a variant of cardanol polyol synthesis by thiol-ene reactions in three steps.The first step is propoxylation of cardanol by reacting cardanol with propylene oxide;the second step is mercaptanization of propoxylated cardanol by reacting double bonds with hydrogen sulfide;and the third step involves the addition of the thiol groups of mercaptanized propoxylated cardanol to the double bonds of allyl alcohol,glycerol-1-allyl ether,and trimethylolpropane allyl ether.Thus,obtained polyols were characterized by standard analytical methods.Rigid polyurethane foams prepared from these polyols show promising physical-mechanical properties.The rigid polyurethane foams can be used for various applications such as thermo-insulation of freezers,storage tanks and pipes for food and chemical industries,wood substitutes and flotation materials.
文摘Cardanol is a natural phenol which is obtained from high vacuum distillation of cashew nut shell liquid.It contains a hydrocarbon chain of 15 carbon atoms in the meta position,either with one,two or three nonconjugated double bonds.This article describes thermal thiol-ene reaction to synthesize new cardanol-based polyols for polyurethanes with aromatic-aliphatic structure.Phenolic hydroxyl group was blocked by alkoxylation and 2-mercaptoethanol was added to the double bonds of propoxylated cardanol.The resultant product is a mixture of polyols that may contain one,two,three or four hydroxyl groups,as a function of the number of double bonds reacted with 2-mercaptoethanol.Similar polyols,but with much higher functionality,were also synthesized from condensation of cardanol-based novolacs with formaldehyde.These cardanolbased polyols were further utilized to prepare rigid polyurethane foams(PUs)with excellent physical and mechanical properties,useful for various applications in chemical and food industries.
基金financially supported by the National Natural Science Foundation of China(No.51201047)the Major State Basic Research Development Program of China(No.2012CB619600)+1 种基金the China Postdoctoral Science Foundation(No.20110491038)the Fundamental Research Funds for the Central Universities of China(No.HIT.NSRIF.2013001)
文摘In situ(α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.
基金supported by the Deanship of Scienti c Research at King Saud University for funding under Research Group(No.RG1440-021).
文摘Zinc oxide is recently being used as a magnetic semiconductor with the introduction of mag-netic elements.In this work,we report phase pure synthesis of Mg and Ni co-substituted ZnO to explore its structure,optical,magnetic and photo-catalytic properties.X-ray di raction analysis reveals the hexagonal wurtzite type structure having P63mc space group without any impurity phase.UV-Vis spectrophotometry demonstrates the variation in bandgap with the addition of Mg and Ni content in ZnO matrix.Magnetic measurements exhibit a clear boosted magnetization in Ni and Mg co-doped compositions with its stable value of bandgap corroborating the structural stability and magnetic tuning for its advanced applications in modern-day spintronic devices.Photo-catalytic measurements performed using methyl green degradation demonstrate an enhanced trend of activity in Mg and Ni co-doped compositions.