Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms und...Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.展开更多
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical st...A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.展开更多
Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyph...Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyphenyl)-2,3- phthalazinone, 4,4'-difluorobenzophenone and 3,3'-disulfonate-4,4'-difluorobenzophenone. The chemical structure of SPPEK-DMs was characterized by FTIR and 1H-NMR. Thermal stability of SPPEK-DMs was characterized by the thermogravimetric analysis. The membranes prepared from SPPEK-DMs exhibited ion exchange capacities (IEC) ranging from 0.93 mmol.g-1 to 1.86 mmol.g-1. Water uptake, swelling, oxidative stability and methanol permeability of SPPEK- DMs membranes were investigated. SPPEK-DMs membranes exhibited high oxidative stability. The methanol permeability values of SPPEK-DMs membranes were in the range 5.15× 10^-8-6.61×10^-7 cm^2.s-1, which was much lower than those of Nafion117. The proton conductivity of SPPEK-DM40 membranes was 1.1 ×10^-2 S.cm^-1 at 70℃.展开更多
2,4-Dichlorophenol was removed from wasterwater using a new hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber membrane by vacuum membrane distillation (VMD).
In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Py...In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.展开更多
The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding...The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding device, and then immersed into phosphate buffer saline (PBS) for in vitro degradation experiments. The mechanisms of degradation and the degradation rate were characterized by the change in molecular weight and reduction in specimen mass. In addition, the effects of processing temperature and the geometry of the formed PSADT tablets on the rate of degradation were studied. The surface morphology at different degradation times was observed by scanning electron microscopy (SEM). The experimental results showed that PSADT exhibited sur^hce erosion due to the fact that near zero-order degradation kinetics was observed during its degradation process. Moreover, it is found that the geometry of tablets played an important role on the rate of degradation, while the processing temperature had no significant effect on the PSADT degradation rate.展开更多
Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the at...Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).展开更多
A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the...A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.展开更多
Silicon carbide fiber reinforced silicon carbide matrix(SiC_(f)/SiC)composite is the key cladding material of nuclear fuel,which determines the safety and reliability of nuclear fuel storage and transportation.The rep...Silicon carbide fiber reinforced silicon carbide matrix(SiC_(f)/SiC)composite is the key cladding material of nuclear fuel,which determines the safety and reliability of nuclear fuel storage and transportation.The replacement of its storage and transportation scenario needs to be completed by the manipulator,but the application of SiC_(f)/SiC wear,fracture,and nuclear leakage in the snatching process of brittle-flexible-rigid contact in the irradiation environment has been seriously restricted due to unclear understanding of the damage mechanism.Therefore,the effects of irradiation dose and clamping load on the friction characteristics of the contact interface between SiC_(f)/SiC clad tube are studied in this paper,and the effects of irradiation parameters and clamping force on the static friction coefficient of the contact interface between the clad tube and flexible nitrile are obtained.Based on the Greenwood-Williamson tribological model,a numerical model of the shape and structure of the contact micro-convex at the micro-scale of the clamping interface is constructed by introducing the multi-surface integral,and finally verified by experiments.The research results show that there is a unique“Irradiation suppression zone”under the clamping condition of SiC_(f)/SiC cladding tube under the nuclear irradiation environment,and the growth of static friction coefficient slows down until stagnates after irradiation reaches a certain extent(600 kGy),and there will be a decline when the irradiation dose continues to increase,among which the clamping force of 15.2 N within the irradiation interval of 1,000 kGy can meet the safety of nuclear environment operation.The results of this paper can provide an important theoretical basis and application guidance for the safe operation of SiC_(f)/SiC cladding tubes in the storage and transportation clamping process.展开更多
Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mecha...Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mechanism is not fully understood owing to its disordered grid interpenetrating structure. In this work, computer-aided preparation technology is used to accurately reconstruct the complex spiral network structure of FMP-MR multipoint random contact, and a cell group model with an energy dissipation mechanism is proposed to obtain the dynamic energy distribution of the contact friction in both space and time dimensions. By judging the effective contact point, a global displacement ablation phenomenon of hooked staggered porous materials is induced. The macro- and micro-equivalent frictions are introduced to effectively explain the characteristics of the strong energy dissipation in FMP-MR under fretting excitation. A real and effective damping hysteresis constitutive model is then constructed to dynamically capture the mapping relationship between the complex nonlinear topological structure effect of the materials and spatial random contact dry friction in real time. The results indicate that the contact behavior between turns of the FMP-MR wire follows a clear quasi-Gaussian distribution under an external load, forcing the topological results to change. The energy dissipation of the materials revealed peak energy consumption lagging behind the loading limit for a certain distance, which can be determined by the effective contact point and contact dry friction slip. The consistency between the quasi-static compression tests and constitutive curves of the model was quantitatively verified through residual analysis. The data demonstrated the differential behavior of the FMP-MR meso-structure to follow a phased growth law during loading with different action mechanisms in the guiding, main growth, and relaxation stages of the energy consumption displacement curve. In summary, these findings provide an acceptable theoretical basis for the damping energy consumption mechanism and lifetime prediction of FMP-MR.展开更多
Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds requir...Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds require precise information on operating and peak pressure drops.In this study,a multi-layer perceptron(MLP)neural network was employed for accurate prediction of these hydrodynamic characteristics.A relatively huge number of experiments were accomplished and the most influential dimensionless groups were extracted using the Buckingham-pi theorem.Then,the dimensionless groups were used for developing the MLP model for simultaneous estimation of operating and peak pressure drops.The iterative constructive technique confirmed that 4-14-2 is the best structure for the MLP model in terms of absolute average relative deviation(AARD%),mean square error(MSE),and regression coefficient(R^(2)).The developed MLP approach has an excellent capacity to predict the transformed operating(MSE=0.00039,AARD%=1.30,and R^(2)=0.76099)and peak(MSE=0.22933,AARD%=11.88,and R2=0.89867)pressure drops.展开更多
基金supported by National Key Research and Development Program"Advanced Structures and Composite Materials"Special Project[Grant No.2024YFB3712800]the Fundamental Research Funds for the Central Universities[Grant No.DUT22-LAB605]Liaoning Province's"Unveiling the List and Leading the Way"Science and Technology Research and Development Special Project[Grant No.2022JH1/10400043]。
文摘Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
文摘A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.
基金supported by the Natural Science Foundation of Liaoning Province of China(No.20041076)
文摘Sulfonated poly(ether ketone)s containing 3,5-dimethyl phthalazinone moieties (SPPEK-DMs) with different degrees of sulfonation (DS) were synthesized via direct polycondensation from 4-(3,5-dimethyl-4-hydroxyphenyl)-2,3- phthalazinone, 4,4'-difluorobenzophenone and 3,3'-disulfonate-4,4'-difluorobenzophenone. The chemical structure of SPPEK-DMs was characterized by FTIR and 1H-NMR. Thermal stability of SPPEK-DMs was characterized by the thermogravimetric analysis. The membranes prepared from SPPEK-DMs exhibited ion exchange capacities (IEC) ranging from 0.93 mmol.g-1 to 1.86 mmol.g-1. Water uptake, swelling, oxidative stability and methanol permeability of SPPEK- DMs membranes were investigated. SPPEK-DMs membranes exhibited high oxidative stability. The methanol permeability values of SPPEK-DMs membranes were in the range 5.15× 10^-8-6.61×10^-7 cm^2.s-1, which was much lower than those of Nafion117. The proton conductivity of SPPEK-DM40 membranes was 1.1 ×10^-2 S.cm^-1 at 70℃.
文摘2,4-Dichlorophenol was removed from wasterwater using a new hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber membrane by vacuum membrane distillation (VMD).
文摘In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.
基金Funded by the China Scholarship Council and Wisconsin Institute for Discovery(WID)the Scientific Research Staring Foundation,Fujian University of Technology,China(No.GY-Z13028)+1 种基金the Programfor New Century Excellent Talents in Fujian Province University(NCETFJ-2010)the Research Fund for Fujian Provincial University(JK-2010038)
文摘The in vitro degradation rate of polyanhydride (poly(sebacic acid), diacetoxy terminated), also known as PSADT, was investigated. PSADT tablets with a circular cross-section were formed using a compression molding device, and then immersed into phosphate buffer saline (PBS) for in vitro degradation experiments. The mechanisms of degradation and the degradation rate were characterized by the change in molecular weight and reduction in specimen mass. In addition, the effects of processing temperature and the geometry of the formed PSADT tablets on the rate of degradation were studied. The surface morphology at different degradation times was observed by scanning electron microscopy (SEM). The experimental results showed that PSADT exhibited sur^hce erosion due to the fact that near zero-order degradation kinetics was observed during its degradation process. Moreover, it is found that the geometry of tablets played an important role on the rate of degradation, while the processing temperature had no significant effect on the PSADT degradation rate.
基金financially supported by National Key Research and Development Program of China(2017YFB0307600)Liaoning Revitalization Talents Program(XLYC1802073)Dalian High-level Talent Innovation Support Program(2019RD08)。
文摘Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).
文摘A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.
基金supported by the National Natural Science Foundation of China(Grant No.52075526)the“Ningbo 3315 Plan Innovation Team”(Grant No.2017A-28-C)+2 种基金the National Natural Science Foundation of China(Grant No.91860204)the Fundamental Research Funds for the Central Universities(Grant No.DUT22LAB605)the National Key R&D Program of China(Grant No.2018YFB1107500).
文摘Silicon carbide fiber reinforced silicon carbide matrix(SiC_(f)/SiC)composite is the key cladding material of nuclear fuel,which determines the safety and reliability of nuclear fuel storage and transportation.The replacement of its storage and transportation scenario needs to be completed by the manipulator,but the application of SiC_(f)/SiC wear,fracture,and nuclear leakage in the snatching process of brittle-flexible-rigid contact in the irradiation environment has been seriously restricted due to unclear understanding of the damage mechanism.Therefore,the effects of irradiation dose and clamping load on the friction characteristics of the contact interface between SiC_(f)/SiC clad tube are studied in this paper,and the effects of irradiation parameters and clamping force on the static friction coefficient of the contact interface between the clad tube and flexible nitrile are obtained.Based on the Greenwood-Williamson tribological model,a numerical model of the shape and structure of the contact micro-convex at the micro-scale of the clamping interface is constructed by introducing the multi-surface integral,and finally verified by experiments.The research results show that there is a unique“Irradiation suppression zone”under the clamping condition of SiC_(f)/SiC cladding tube under the nuclear irradiation environment,and the growth of static friction coefficient slows down until stagnates after irradiation reaches a certain extent(600 kGy),and there will be a decline when the irradiation dose continues to increase,among which the clamping force of 15.2 N within the irradiation interval of 1,000 kGy can meet the safety of nuclear environment operation.The results of this paper can provide an important theoretical basis and application guidance for the safe operation of SiC_(f)/SiC cladding tubes in the storage and transportation clamping process.
基金the National Natural Science Foundation of China(Grant Nos.52175162,51805086,and 51975123)the Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01).
文摘Flexible microporous metal rubber (FMP-MR) is a high-damping material that dissipates energy by dry friction through internal spiral metal wires in contact with each other. However, the FMP-MR energy dissipation mechanism is not fully understood owing to its disordered grid interpenetrating structure. In this work, computer-aided preparation technology is used to accurately reconstruct the complex spiral network structure of FMP-MR multipoint random contact, and a cell group model with an energy dissipation mechanism is proposed to obtain the dynamic energy distribution of the contact friction in both space and time dimensions. By judging the effective contact point, a global displacement ablation phenomenon of hooked staggered porous materials is induced. The macro- and micro-equivalent frictions are introduced to effectively explain the characteristics of the strong energy dissipation in FMP-MR under fretting excitation. A real and effective damping hysteresis constitutive model is then constructed to dynamically capture the mapping relationship between the complex nonlinear topological structure effect of the materials and spatial random contact dry friction in real time. The results indicate that the contact behavior between turns of the FMP-MR wire follows a clear quasi-Gaussian distribution under an external load, forcing the topological results to change. The energy dissipation of the materials revealed peak energy consumption lagging behind the loading limit for a certain distance, which can be determined by the effective contact point and contact dry friction slip. The consistency between the quasi-static compression tests and constitutive curves of the model was quantitatively verified through residual analysis. The data demonstrated the differential behavior of the FMP-MR meso-structure to follow a phased growth law during loading with different action mechanisms in the guiding, main growth, and relaxation stages of the energy consumption displacement curve. In summary, these findings provide an acceptable theoretical basis for the damping energy consumption mechanism and lifetime prediction of FMP-MR.
文摘Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds require precise information on operating and peak pressure drops.In this study,a multi-layer perceptron(MLP)neural network was employed for accurate prediction of these hydrodynamic characteristics.A relatively huge number of experiments were accomplished and the most influential dimensionless groups were extracted using the Buckingham-pi theorem.Then,the dimensionless groups were used for developing the MLP model for simultaneous estimation of operating and peak pressure drops.The iterative constructive technique confirmed that 4-14-2 is the best structure for the MLP model in terms of absolute average relative deviation(AARD%),mean square error(MSE),and regression coefficient(R^(2)).The developed MLP approach has an excellent capacity to predict the transformed operating(MSE=0.00039,AARD%=1.30,and R^(2)=0.76099)and peak(MSE=0.22933,AARD%=11.88,and R2=0.89867)pressure drops.