期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Neodymium-doped hollow Ir/IrO_(2)nanospheres with low geometric iridium density enable excellent acidic water oxidation performance
1
作者 Xiaoqian Wei Hanyu Gao +7 位作者 Tiantian Wang Zijian Li Yanru Geng Guiping Zheng Min Gyu Kim Haeseong Jang Xien Liu Qing Qin 《Chinese Journal of Structural Chemistry》 2025年第7期3-10,共8页
Reducing the Ir loading while preserving catalytic performance and mechanical robustness in anodic catalyst layers remains a critical challenge for the large-scale implementation of proton exchange membrane water elec... Reducing the Ir loading while preserving catalytic performance and mechanical robustness in anodic catalyst layers remains a critical challenge for the large-scale implementation of proton exchange membrane water electrolysis(PEMWE).Herein,we present a structural engineering strategy involving neodymium-doped Ir/IrO_(2)(Nd-Ir/IrO_(2))hollow nanospheres with precisely adjustable shell thickness and cavity dimensions.The optimized catalyst demonstrates excellent oxygen evolution reaction(OER)performance in acidic media,achieving a remarkably low overpotential of 259 mV at a benchmark current density of 10 mA cm^(-2) while exhibiting substantially enhanced durability compared to commercial IrO_(2) and Ir/IrO_(2) counterparts.Notably,the Nd-Ir/IrO_(2) catalyst delivers a mass activity of 541.6 A gIr^(-1) at 1.50 V vs RHE,representing a 74.5-fold enhancement over conventional IrO_(2).Through comprehensive electrochemical analysis and advanced characterization techniques reveal that,the hierarchical hollow architecture simultaneously addresses multiple critical requirements:(i)abundant exposed active sites enabled by an enhanced electrochemical surface area,(ii)optimized mass transport pathways through engineered porosity,and(iii)preserved structural integrity via a continuous conductive framework,collectively enabling significant Ir loading reduction without compromising catalytic layer performance.Fundamental mechanistic investigations further disclose that Nd doping induces critical interfacial Nd-O-Ir configurations that stabilize lattice oxygen,together with intensified electron effect among mixed valent Ir that inhibits the overoxidation of Ir active sites during the OER process,synergistically ensuring enhanced catalytic durability.Our work establishes a dual-modulation paradigm integrating nanoscale architectural engineering with atomic-level heteroatom doping,providing a viable pathway toward high-performance PEMWE systems with drastically reduced noble metal requirements. 展开更多
关键词 Oxygen evolution catalyst Low iridium geometric density Electronic effect Nanoscale architectural engineering Anodic catalyst layer
原文传递
Molecular Engineering of Benzobisoxazole-Based Conjugated Polymers for High-Performance Organic Photodetectors and Fingerprint Image Sensors
2
作者 Cheol Shin WonJo Jeong +7 位作者 Ezgi Darici Lee Jong Baek Park Hyungju Ahn Seyeon Baek Myeong In Kim Dae Sung Chung Kang-Il Seo In Hwan Jung 《Energy & Environmental Materials》 2025年第1期151-163,共13页
Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report... Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors.We synthesized six benzo[1,2-d:4,5-d’]bis(oxazole)(BBO)-based CPs by modifying the alkyl side chains of the CPs.Several relationships between the molecular structure and the OPD performance were revealed,and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs.The optimized CP demonstrated promising OPD performance with a responsivity(R)of 0.22 A/W,specific detectivity(D^(*))of 1.05×10^(13)Jones at a bias of-1 V,rising/falling response time of 2.9/6.9μs,and cut-off frequency(f_(-3dB))of 134 kHz under collimated 530 nm LED irradiation.Finally,a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors(318 ppi).The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal. 展开更多
关键词 alkyl side chain engineering fingerprint image sensor on/off ratio organic photodetector specific detectivity
在线阅读 下载PDF
Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction
3
作者 Jing Liu Xiandi Ma +8 位作者 Jeonghan Roh Dongwon Shin Ara Cho Jeong Woo Han Jianping Long Zhen Zhou Menggai Jiao Kug-Seung Lee EunAe Cho 《Chinese Journal of Catalysis》 2025年第2期259-270,共12页
Exploring platinum single-atom electrocatalysts(SACs)is of great significance for effectively catalyzing the hydrogen evolution reaction in order to maximize the utilization of metal atoms.Herein,ruthenium clusters wi... Exploring platinum single-atom electrocatalysts(SACs)is of great significance for effectively catalyzing the hydrogen evolution reaction in order to maximize the utilization of metal atoms.Herein,ruthenium clusters with several atoms(Rux)supported on nitrogen-doped,cost-efficient Black Pearls 2000(Ru_(x)NBP),were synthesized as initial materials via a simple hydrothermal method.Then,[PtCl_(4)]^(2–)ion was reductively deposited on RuxNBP to obtain a Pt SAC(Pt1/RuxNBP).Electrochemical measurements demonstrate the excellent HER performance of Pt_(1)/Ru_(x)NBP with a 5.7-fold increase in mass activity compared to the commercial Pt/C at 20 mV.Moreover,the cell voltage of the proton exchange membrane electrolyzer with Pt_(1)/Ru_(x)NBP is 20 mV lower compared to that with commercial Pt/C at 1.0 A cm^(−2).Physical characterization and density functional theory calculations revealed that the preserved Pt–Cl bond of[PtCl_(4)]^(2–)and the RuxNBP support co-regulate the 5d state of isolated Pt atoms and enhance the catalytic HER capacity of Pt1/RuxNBP. 展开更多
关键词 PLATINUM Single-atomeletrocatalyst Ruthenium cluster Hydrogen evolution reaction Density functional theory
在线阅读 下载PDF
Electrochemical determination of the degree of atomic surface roughness in Pt-Ni alloy nanocatalysts for oxygen reduction reaction 被引量:7
4
作者 Tae-Yeol Jeon Seung-Ho Yu +2 位作者 Sung J.Yoo Hee-Young Park Sang-Kyung Kim 《Carbon Energy》 CAS 2021年第2期375-383,共9页
Pt-Ni alloy nanocrystals with Pt-enriched shells were prepared by selective etching of surface Ni using sulfuric acid and hydroquinone.The changes in the electronic and geometric structure of the alloy nanoparticles a... Pt-Ni alloy nanocrystals with Pt-enriched shells were prepared by selective etching of surface Ni using sulfuric acid and hydroquinone.The changes in the electronic and geometric structure of the alloy nanoparticles at the surface were elucidated from the electrochemical surface area,the potential of zero total charge(PZTC),and relative surface roughness,which were determined from CO-and CO_(2)-displacement experiments before and after 3000 potential cycles under oxygen reduction reaction conditions.While the highest activity and durability were achieved in hydroquinone-treated Pt–Ni,sulfuric acidtreated one showed the lower activity and durability despite its higher surface Pt concentration and alloying level.Both PZTC and QCO_(2)/QCO ratio(desorption charge of reductively adsorbed CO_(2) normalized by COad-stripping charge)depend on surface roughness.In particular,QCO_(2)/QCO ratio change better reflects the roughness on an atomic scale,and PZTC is also affected by the electronic modification of Pt atoms in surface layers.In this study,a comparative study is presented to find a relationship between surface structure and electrochemical properties,which reveals that surface roughness plays a critical role to improve the electrochemical performance of Pt-Ni alloy catalysts with Pt-rich surfaces. 展开更多
关键词 ELECTROCATALYST fuel cell oxygen reduction reaction Pt-Ni surface roughness
在线阅读 下载PDF
Gradient Si-and Ti-doped Fe_(2)O_(3) hierarchical homojunction photoanode for efficient solar water splitting:Effect of facile microwave-assisted growth of Si-FeOOH on Ti-FeOOH nanocorals 被引量:3
5
作者 Tae Sik Koh Periyasamy Anushkkaran +3 位作者 Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期27-37,I0002,共12页
The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped F... The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped Fe_(2)O_(3) homojunction photoanode to improve the photoelectrochemical(PEC)performance of a Ti-doped Fe_(2)O_(3) photoanode.Ti-FeOOH nanocorals were synthesized using a hydrothermal process,and Si-FeOOH was grown on Ti-FeOOH nanocorals using a rapid and facile microwaveassisted(MW)technique.By varying the MW irradiation time,the thickness of the Si/Ti:Fe_(2)O_(3) photoanode was adjusted and an optimized 3-Si/Ti:Fe_(2)O_(3) photoelectrode was achieved with a significantly enhanced photocurrent density(1.37 mA cm^(-2) at 1.23 V vs.RHE)and a cathodic shift of the onset potential(150 mV)compared with that of bare Ti-Fe_(2)O_(3).This enhanced PEC performance can be ascribed to homojunction formation and Si gradient doping.The Si dopant increased the donor concentration and the formation of a homojunction improved the intrinsic built-in electric field,thereby promoting charge separation and charge transfer.Furthermore,the as-formed homojunction passivated the surfacetrapping states,consequently improving the charge transfer efficiency(60%at 1.23 VRHE)at the photoanode/electrolyte interface.These findings could pave the way for the microwave-assisted fabrication of diverse efficient homojunction photoanodes for PEC water splitting applications. 展开更多
关键词 HOMOJUNCTION MICROWAVE-ASSISTED Hematite Gradient doping PEC water splitting
在线阅读 下载PDF
Modified TiO_(2)/In_(2)O_(3) heterojunction with efficient charge separation for visible-light-driven photocatalytic CO_(2) reduction to C_(2) product 被引量:3
6
作者 Mengfang Liang Xiaodong Shao +8 位作者 Ji Yoon Choi Young Dok Kim Trang Thu Tran Jeongyong Kim Yosep Hwang Min Gyu Kim Yunhee Cho Sophia Akhtar Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期714-720,共7页
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ... Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts. 展开更多
关键词 HETEROJUNCTION Oxygen vacancy Photocatalytic CO_(2)reduction C_(2)product Charge separation
在线阅读 下载PDF
Fine-tuning electronic structure of N-doped graphitic carbon-supported Co-and Fe-incorporated Mo_(2)C to achieve ultrahigh electrochemical water oxidation activity 被引量:2
7
作者 Md.Selim Arif Sher Shah Hyeonjung Jung +3 位作者 Vinod K.Paidi Kug-Seung Lee Jeong Woo Han Jong Hyeok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期134-149,共16页
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated... Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance. 展开更多
关键词 fine-tuning electronic structures heteronanostructures Mo_(2)C multimetal(Co/Fe) oxygen evolution reaction
在线阅读 下载PDF
Protonic recognition and assembly for the creation of porous Bronsted acid catalysts with enhanced catalytic efficiency 被引量:1
8
作者 Liping Huang Mingyun Liang +3 位作者 Yajun Fang Jehan Kim Yuntian Yang Zhegang Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期158-161,共4页
Due to the high local concentration of substrates in confined space, porous solid Bronsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Bronste... Due to the high local concentration of substrates in confined space, porous solid Bronsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Bronsted acids lack long-term stability due to chemical hydrolysis. Moreover, the products inhibition effect in confined rigid cavities severely obstructs subsequent catalysis. Here, tubular Bronsted acid catalyst with unique recognition of protons was presented by self-assembly of p H-responsive aromatic amphiphiles. The responsive assembly could mechanically transfer hydrogen ions from low-concentration acidic solution into tubular defined pores, thereby producing effective catalytic activity for Mannich reactions in mildly acidic solution. Notably, the tubular catalyst unfolded into flat sheets upon addition of triethylamine for efficient release of products, which could be recovered by subsequent acidification and the catalytic activity still remained. Therefore, the porous Bronsted acid with reversible assembly provides a new strategy for mass synthesis through increasing conversion times. 展开更多
关键词 Tubular Brosted acid Protonic recognition Dynamic assembly Heterogeneous catalysis Large-scale synthesis
原文传递
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
9
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
在线阅读 下载PDF
Correction:Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material 被引量:2
10
作者 Orynbay Zhanadilov Sourav Baiju +7 位作者 Natalia Voronina Jun Ho Yu A-Yeon Kim Hun-Gi Jung Kyuwook Ihm Olivier Guillon Payam Kaghazchi Seung-Taek Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期532-532,共1页
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ... Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected. 展开更多
关键词 removing Transition IMPACT
在线阅读 下载PDF
Enhancement of vertical phase separation in sequentially deposited organic photovoltaics through the independent processing of additives 被引量:1
11
作者 Damin Lee Changwoo Park +6 位作者 Gayoung Ham Young Yong Kim Sung-Nam Kwon Junyeong Lee Sungjin Jo Seok-In Na Hyojung Cha 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期768-777,共10页
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th... Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology. 展开更多
关键词 Sequential deposition Vertical phase separation Charge dynamics Organic photovoltaics Nonfullerene acceptors
在线阅读 下载PDF
Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material 被引量:1
12
作者 Orynbay Zhanadilov Sourav Baiju +7 位作者 Natalia Voronina Jun Ho Yu A.-Yeon Kim Hun‑Gi Jung Kyuwook Ihm Olivier Guillon Payam Kaghazchi Seung‑Taek Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期340-358,共19页
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t... This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries. 展开更多
关键词 Layered oxide Oxygen evolution Sodium battery VACANCY CATHODE
在线阅读 下载PDF
Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries
13
作者 Jaeyoung Kim Wontae Lee +7 位作者 Jangwhan Seok Eunkang Lee Woosung Choi Hyunyoung Park Soyeong Yun Minji Kim Jun Lim Won-Sub Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期226-236,I0008,共12页
All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitab... All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries. 展开更多
关键词 Liquid electrolyte lithium batteries All-solid-state lithium batteries Ni-rich cathode Synchrotron-based X-ray techniques Inhomogeneous reaction
在线阅读 下载PDF
Enhancing ammonia production rates from electrochemical nitrogen reduction by engineering three-phase boundary with phosphorus-activated Cu catalysts
14
作者 Jeehye Kim Cho Hee Lee +5 位作者 Yong Hyun Moon Min Hee Lee Eun Hyup Kim Sun Hee Choi Youn Jeong Jang Jae Sung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期394-401,共8页
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i... Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems. 展开更多
关键词 Electrochemical nitrogen reduction reaction Ammonia production Phosphorous modified copper electrodes Gas diffusion electrodes Three-phase boundary PTFE coating
在线阅读 下载PDF
Ex situ aging effect on sulfonated poly(ether ether ketone) membrane:Hydration-dehydration cycling and hydrothermal treatment
15
作者 Seung-Young Choi Kyeong Sik Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期583-592,I0014,共11页
Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation ... Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydrationdehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering.However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h. 展开更多
关键词 Sulfonated poly(ether ether ketone) Humidity cycle test Ex situ aging Proton exchange membrane Fuel cell
在线阅读 下载PDF
Tailoring local structures of atomically dispersed copper sites for highly selective CO_(2) electroreduction
16
作者 Kyung‐Jong Noh Byoung Joon Park +5 位作者 Ying Wang Yejung Choi Sang‐Hoon You Yong‐Tae Kim Kug‐Seung Lee Jeong Woo Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期79-90,共12页
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc... Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions. 展开更多
关键词 atomic local structure density functional theory electrochemical CO_(2)reduction metal nitrogen‐doped carbon single‐atom catalyst
在线阅读 下载PDF
Electron-deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO_(2)-to-formate conversion
17
作者 Qing Qin Zijian Li +8 位作者 Yingzheng Zhang Haeseong Jang Li Zhai Liqiang Hou Xiaoqian Wei Zhe Wang Min Gyu Kim Shangguo Liu Xien Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期127-136,共10页
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2)to CO,but... Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2)to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2)to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2)reduction. 展开更多
关键词 charge redistribution CO_(2)reduction reaction ELECTROCATALYST heterointerfaces SELECTIVITY
在线阅读 下载PDF
Self-motivated,thermally oxidized hematite nanoflake photoanodes:Effects of pre-polishing and ZrO_(2) passivation layer
18
作者 Love Kumar Dhandole Hyun Hwi Lee +2 位作者 Weon-Sik Chae Jum Suk Jang Jae Sung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期415-423,共9页
High-temperature thermal oxidation of an Fe foil produces a high-quality,crystalline hematite nanoflake suitable as a photoanode for the photoelectrochemical(PEC)water oxidation.Physical pre-polishing of the foil surf... High-temperature thermal oxidation of an Fe foil produces a high-quality,crystalline hematite nanoflake suitable as a photoanode for the photoelectrochemical(PEC)water oxidation.Physical pre-polishing of the foil surface has a profound effect in the formation of a vertically-aligned nanoflakes of hematite phase with extended(110)planes by removing the loosely-bonded oxide layer.When the surface of the photoanode is modified with a ZrO_(2) passivation layer and a cobalt phosphate co-catalyst,the charge recombination at the photoanode-electrolyte interface is greatly suppressed to improve its overall PEC activity.As a result,the photocurrent density at 1.10 VRHE under 1 sun condition is enhanced from 0.22 mA cm^(-2) for an unmodified photoanode to 0.59 mA cm^(-2) for the fully modified photoanode,and the photocurrent onset potential is shifted cathodically by 400 mV.Moreover,the photoanode demonstrates outstanding stability by showing steady production of H_(2) and O_(2) gases in the stoichiometric ratio of 2:1 in a continuous PEC operation for 10 h. 展开更多
关键词 Fe foil Thermal oxidation NANOFLAKES Photoelectrochemical water splitting Surface modifications
在线阅读 下载PDF
Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-lon Batteries
19
作者 Nibagani Naresh Suyoon Eom +4 位作者 Sang Jun Lee Su Hwan Jeong Ji-Won Jung Young Hwa Jung Joo-Hyung Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期100-111,共12页
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc... The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs. 展开更多
关键词 aqueous zinc-ion batteries BIRNESSITE buserite disordered structure phase transformation
在线阅读 下载PDF
Oxygen-deficient SnO_(2)nanoparticles with ultrathin carbon shell for efficient electrocatalytic N_(2)reduction
20
作者 Guangkai Li Haeseong Jang +5 位作者 Zijian Li Jia Wang Xuqiang Ji Min Gyu Kim Xien Liu Jaephil Cho 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期672-679,共8页
For high-efficiency NH_(3)synthesis via ambient-condition electrohydrogenation of inert N_(2),it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency,good ... For high-efficiency NH_(3)synthesis via ambient-condition electrohydrogenation of inert N_(2),it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency,good conductivity and large surface area.Here,oxygen-deficient SnO_(2)nanoparticles encapsulated by ultrathin carbon layer(d-SnO_(2)@C)are developed by hydrothermal deposition coupled with annealing process,as promising catalysts for ambient electrocatalytic N_(2)reduction.d-SnO_(2)@C exhibits high activity and excellent selectivity for electrocatalytic conversion of N_(2)to NH_(3)in acidic electrolytes,with Faradic efficiency as high as 12.7%at-0.15 V versus the reversible hydrogen electrode(RHE)and large NH_(3)yield rate of 16.68μg h^(-1)mgcat^(-1)at-0.25 V vs.RHE in 0.1 mol L^(-1)HCl.Benefiting from the structural superiority of enhanced charge transfer efficiency and optimized surface states,d-SnO_(2)@C also achieves excellent long-term stability. 展开更多
关键词 N_(2)reduction reaction NH_(3)synthesis SnO_(2) ELECTROCATALYSTS Ambient conditions
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部