Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have be...Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have been recorded as growth promoters in rice. This study was developed to understand the effect of the application of rhizobacteria on upland rice plants in consecutive plantations. Experiments were conducted in a completely randomized design with four replications of four treatments: rice seed inoculated with P. fluorescens BRM-32111, rice seed inoculated with B. pyrrocinia BRM-32113(both sown on soil with rice residue), non-inoculated plants sown on soil with rice residue(control with residue(WR)), and non-inoculated plants on soil with no residue(NR). Roots and seedling growth were adversely affected by allelopathic compounds in control WR plants. Plants inoculated with rhizobacteria P. fluorescens BRM-32111 or B. pyrrocinia BRM-32113 induced an increase of 88% in biomass, 3% in the leaf area, 40% in length, 67% in root biomass, 21% in chlorophyll a, 53% in chlorophyll(a+b), 50% in rate of carbon assimilation(A), 227% in A/rubisco carboxylation efficiency(Ci) and 63% in water use efficiency(WUE) compared to control WR plants. These results indicate that rhizobacteria P. fluorescens BRM-32111 and B. pyrrocinia BRM-32113 increase the tolerance of rice plants to stress from allelochemicals. There are possible practical agricultural applications of these results for mitigating the effects of environmental allelochemistry on upland rice.展开更多
Tomato cultivation faces formidable challenges from both biotic and abiotic stressors,necessitating innovative and sustainable strategies to ensure crop resilience and yield stability.This comprehensive review delves ...Tomato cultivation faces formidable challenges from both biotic and abiotic stressors,necessitating innovative and sustainable strategies to ensure crop resilience and yield stability.This comprehensive review delves into the evolving landscape of employing microbial consortia as a dynamic tool for the integrated management of biotic and abiotic stresses in tomato plants.The microbial consortium,comprising an intricate network of bacteria,fungi,and other beneficial microorganisms,plays a pivotal role in promoting plant health and bolstering defense mechanisms.Against biotic stressors,the consortium exhibits multifaceted actions,including the suppression of pathogenic organisms through antagonistic interactions and the induction of systemic resistance in tomato plants.On the abiotic front,the microbial consortium enhances nutrient availability,optimizes water retention,and ameliorates soil structure,thus mitigating the adverse effects of factors such as drought,salinity,and nutrient imbalances.This review synthesizes current research findings,highlighting the diverse mechanisms through which microbial consortia positively influence the physiological and molecular responses of tomato plants to stress.Furthermore,it explores the adaptability of microbial consortia to various agroecosystems,offering a versatile and sustainable approach to stress management.As a promising avenue for eco-friendly agriculture,the utilization of microbial consortia in tomato cultivation emerges not only as a tool for stress mitigation but also as a transformative strategy to foster long-term sustainability,reduce reliance on synthetic inputs,and enhance overall crop productivity in the face of changing environmental conditions.展开更多
The use of beneficial microorganisms in forage grasses is a potentially advantageous technique for a more sustainable pasture management by decreasing the need for chemical fertilization. Our aims were to determine th...The use of beneficial microorganisms in forage grasses is a potentially advantageous technique for a more sustainable pasture management by decreasing the need for chemical fertilization. Our aims were to determine the best method of microorganism inoculation on Brachiaria (Syn. Urochloa) brizantha cv. BRS Piata, compare the responses of inoculated plants of this forage grass with fertilized and unfertilized controls and examine its effect on some morphological, physiological and biochemical responses. On the first experiment, three inoculation methods were tested: in the seed, seed and soil, and soil, with Pseudomonas fluorescens (BRM-32111) and Burkholderia pyrrocinia (BRM-32113). In the second experiment, fertilized and unfertilized plants were either inoculated with BRM-32111, BRM-32113 and co-inoculated (BRM-32111 + BRM-32113). In a final experiment, B. brizantha was inoculated by soil drenching with BRM-32111, BRM-32113 and co-inoculated (BRM-32111 + BRM-32113), and compared to fertilized- and unfertilized-controls. The inoculation by soil drenching, at seedling stage, was more effective than inoculation only in the seed or both in the seed and by soil drenching. The fertilizer may have suppressed the beneficial bacterial effects on the growth of B. brizantha. P. fluorescens and B. pyrrocinia co-inoculated increased nitrate, protein, nitrogen concentration, Spad index (chlorophyll content), leaf area, number of tillers, net photosynthesis and total biomass production of B. brizantha plants. Our results point out to a potentially valuable source of practical information in the search of an eco-friendlier approach to increase pasture productivity.展开更多
Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 ...Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.In this work,we demonstrate that Le0752,an orotidine-5´-phosphate decarboxylase enzyme(ODCase)catalyzing a pivotal step of the UMP de novo biosynthesis pathway,is vital for HSAF-mediated antimicrobial activities and growth of L.enzymogenes OH11,but not for twitching motility.This gene regulates the production of HSAF by affecting the expression of lafB,a key gene in the HSAF biosynthesis operon,through the transcription factor Clp.Interestingly,bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases,whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I,which contains most ODCases from Gram-positive bacteria,Gram-negative bacteria and cyanobacteria.Moreover,the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.Together,these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in L.enzymogenes,which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.展开更多
This article is the 17th in the Fungal Diversity Notes series which allows the researchers to publish fungal collections with updated reports of fungus-host and fungus-geography.Herein we report 97 taxa with four new ...This article is the 17th in the Fungal Diversity Notes series which allows the researchers to publish fungal collections with updated reports of fungus-host and fungus-geography.Herein we report 97 taxa with four new genera distributed in three phyla(Ascomycota,Glomeromycota and Mucoromycota),11 classes,38 orders and 62 families collected from various regions worldwide.This collection is further classified into taxa from 69 genera with four novel genera namely Jinshana,Lithophyllospora,Parapolyplosphaeria and Stegonsporiicola.Furthermore,71 new species,21 new records,one new combination and four novel phylogenetic placements are provided.The new species comprise Acrocalymma estuarinum,Aggregatorygma isidiatum,Alleppeysporonites elsikii,Amphibambusa aquatica,Apiospora hongheensis,Arthrobotrys tachengensis,Calonectria potisiana,Collariella hongheensis,Colletotrichum squamosae,Corynespora chengduensis,Diaporthe beijingensis,Dicellaesporites plicatus,Dicellaesporites verrucatus,Dictyoarthrinium endophyticum,Distoseptispora chiangraiensis,Dothiora eucalypti,Epicoccum indicum,Exesisporites chandrae,Fitzroyomyces pseudopandanicola,Fomitiporia exigua,Fomitiporia rondonii,Fulvifomes subthailandicus,Gigaspora siqueirae,Gymnopus ailaoensis,Hyalorbilia yunnanensis,Hygrocybe minimiholatra,H.mitsinjoensis,H.parviholatra,H.solis,H.vintsy,Helicogermslita kunmingensis,Jinshana tangtangiae,Kirschsteiniothelia dujuanhuensis,Lamproderma subcristatum,Leucoagaricus madagascarensis,Leucocoprinus mantadiaensis,Lithophyllospora australis,Marasmius qujingensis,Melomastia aquilariae,Monoporisporites jansoniusii,M.pattersonii,Monoporisporites valdiyae,Mucispora maesotensis,Mucor soli,Muyocopron yunnanensis,Nigrospora tomentosae,Ocellularia psorirregularis,Ophiocordyceps duyunensis,Oxneriaria nigrodisca,Oxydothis aquatica,O.filiforme,Phacidiella xishuangbannaensis,Phlebiopsis subgriseofuscescens,Pleurothecium takense,Pleurotus tuber-regium,Pseudochaetosphaeronema puerensis,Pseudodactylaria guttulate,Racheliella chinensis,Rhexoacrodictys fangensis,Roussoella neoaquatica,Rubroboletus pruinosus,Sanghuangporus subzonatus,Scytalidium assmuthi,Shrungabeeja kudremukhensis,Spirographa skorinae,Stanjehughesia bambusicola,Stegonsporiicola aurantiaca,Umbelopsis hingganensis,Vararia tenuata,Verruconis pakchongensis,Wongia bandungensis,and Zygosporium cymodoceae.The new combination is Parapolyplosphaeria thailandica(≡Polyplosphaeria thailandica).The 21 new hosts,geographical and habitat records comprise Acrocalymma fici,Apiculospora spartii,Aspergillus subramanianii,Camposporium ramosum,Clonostachys rogersoniana,Colletotrichum brevisporum,C.plurivorum,Collybiopsis gibbosa,Dictyosporium tratense,Distoseptispora adscendens,Exosporium livistonae,Ganoderma gibbosum,Graphis mikuraensis,Gymnosporangium paraphysatum,Lasiodiplodia thailandica,Moesziomyces bullatus,Penicillium cremeogriseum,P.echinulonalgiovense,P.javanicum,P.lanosocoeruleum,P.polonicum,and Pleurotus tuber-regium.Graphis chlorotica,G.panhalensis and G.parilis are given as novel phylogenetic placements.In addition,we provide the morphology of Tarzetta tibetensis which was missing in the previous Fungal Diversity Notes 1611–1716.Identification of characterization of all these taxa are supported by morphological and multigene phylogenetic analyses.展开更多
Plant growth-promoting rhizobacteria(PGPR)contain various biocontrol bacteria with broad-spectrum antimicrobial activity,and their single species has been extensively applied to control crop diseases.The development o...Plant growth-promoting rhizobacteria(PGPR)contain various biocontrol bacteria with broad-spectrum antimicrobial activity,and their single species has been extensively applied to control crop diseases.The development of complex biocontrol community by mixing two or more PGPR members together is a promising strategy to enlarge the efficacy and scope of biocontrol.However,an effective method to assess the natural compatibility of PGPR members has not yet been established to date.Here,we developed such a tool by using the bacterial contactdependent antibacterial activity(CDAA)as a probe.We showed that the CDAA events are common in two-species interactions in the four selected representative PGPRs,represented by the incompatible interaction of Lysobacter enzymogenes strain OH11(OH11)and Lysobacter antibioticus strain OH13(OH13).We further showed that the CDAA between OH11 and OH13 is jointly controlled by a contact-dependent killing device,called the type IV secretion system(T4SS).By deleting the respective T4SS synthesis genes,the T4SS in both strains was co-inactivated and this step unlocked their natural CDAA,resulting in an engineered,compatible mutant alliance that co-displayed antibacterial and antifungal activity.Therefore,this study reveals that releasing bacterial CDAA is effective to rationally engineer the biocontrol community.展开更多
In Pseudomonas aeruginosa(P.aeruginosa),transcription factors(TFs)are important mediators in the genetic regulation of adaptability and pathogenicity to respond to multiple environmental stresses and host defences.The...In Pseudomonas aeruginosa(P.aeruginosa),transcription factors(TFs)are important mediators in the genetic regulation of adaptability and pathogenicity to respond to multiple environmental stresses and host defences.The P.aeruginosa genome harbours 371 putative TFs;of these,about 70 have been shown to regulate virulence-associated phenotypes by binding to the promoters of their target genes.Over the past three decades,several techniques have been applied to identify TF binding sites on the P.aeruginosa genome,and an atlas of TF binding patterns has been mapped.The virulence-associated regulons of TFs show complex crosstalk in P.aeruginosa's regulatory network.In this review,we summarise the recent literature on TF regulatory networks involved in the quorum-sensing system,biofilm formation,pyocyanin synthesis,motility,the type III secretion system,the type VI secretion system,and oxidative stress responses.We discuss future perspectives that could provide insights and targets for preventing clinical infections caused by P.aeruginosa based on the global regulatory network of transcriptional regulators.展开更多
基金the National Council for Scientific and Technological Development,Brazilthe Amazon Research Foundation+3 种基金Brazil,and the Rural Federal University of AmazonBrazil for the research fundingthe Brazilian Federal Agency for the SupportEvaluation of Graduate Education for the grant of a doctorate scholarship
文摘Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have been recorded as growth promoters in rice. This study was developed to understand the effect of the application of rhizobacteria on upland rice plants in consecutive plantations. Experiments were conducted in a completely randomized design with four replications of four treatments: rice seed inoculated with P. fluorescens BRM-32111, rice seed inoculated with B. pyrrocinia BRM-32113(both sown on soil with rice residue), non-inoculated plants sown on soil with rice residue(control with residue(WR)), and non-inoculated plants on soil with no residue(NR). Roots and seedling growth were adversely affected by allelopathic compounds in control WR plants. Plants inoculated with rhizobacteria P. fluorescens BRM-32111 or B. pyrrocinia BRM-32113 induced an increase of 88% in biomass, 3% in the leaf area, 40% in length, 67% in root biomass, 21% in chlorophyll a, 53% in chlorophyll(a+b), 50% in rate of carbon assimilation(A), 227% in A/rubisco carboxylation efficiency(Ci) and 63% in water use efficiency(WUE) compared to control WR plants. These results indicate that rhizobacteria P. fluorescens BRM-32111 and B. pyrrocinia BRM-32113 increase the tolerance of rice plants to stress from allelochemicals. There are possible practical agricultural applications of these results for mitigating the effects of environmental allelochemistry on upland rice.
基金funded by the Phytopathology Unit of the Department of Plant Pathology—Ecole Nationale d’Agriculture(Meknès)Financial support has been provided to SIRAM by PRIMA and MESRSI(Morocco),a program supported by H2020,the European Program for Research and Innovation.
文摘Tomato cultivation faces formidable challenges from both biotic and abiotic stressors,necessitating innovative and sustainable strategies to ensure crop resilience and yield stability.This comprehensive review delves into the evolving landscape of employing microbial consortia as a dynamic tool for the integrated management of biotic and abiotic stresses in tomato plants.The microbial consortium,comprising an intricate network of bacteria,fungi,and other beneficial microorganisms,plays a pivotal role in promoting plant health and bolstering defense mechanisms.Against biotic stressors,the consortium exhibits multifaceted actions,including the suppression of pathogenic organisms through antagonistic interactions and the induction of systemic resistance in tomato plants.On the abiotic front,the microbial consortium enhances nutrient availability,optimizes water retention,and ameliorates soil structure,thus mitigating the adverse effects of factors such as drought,salinity,and nutrient imbalances.This review synthesizes current research findings,highlighting the diverse mechanisms through which microbial consortia positively influence the physiological and molecular responses of tomato plants to stress.Furthermore,it explores the adaptability of microbial consortia to various agroecosystems,offering a versatile and sustainable approach to stress management.As a promising avenue for eco-friendly agriculture,the utilization of microbial consortia in tomato cultivation emerges not only as a tool for stress mitigation but also as a transformative strategy to foster long-term sustainability,reduce reliance on synthetic inputs,and enhance overall crop productivity in the face of changing environmental conditions.
文摘The use of beneficial microorganisms in forage grasses is a potentially advantageous technique for a more sustainable pasture management by decreasing the need for chemical fertilization. Our aims were to determine the best method of microorganism inoculation on Brachiaria (Syn. Urochloa) brizantha cv. BRS Piata, compare the responses of inoculated plants of this forage grass with fertilized and unfertilized controls and examine its effect on some morphological, physiological and biochemical responses. On the first experiment, three inoculation methods were tested: in the seed, seed and soil, and soil, with Pseudomonas fluorescens (BRM-32111) and Burkholderia pyrrocinia (BRM-32113). In the second experiment, fertilized and unfertilized plants were either inoculated with BRM-32111, BRM-32113 and co-inoculated (BRM-32111 + BRM-32113). In a final experiment, B. brizantha was inoculated by soil drenching with BRM-32111, BRM-32113 and co-inoculated (BRM-32111 + BRM-32113), and compared to fertilized- and unfertilized-controls. The inoculation by soil drenching, at seedling stage, was more effective than inoculation only in the seed or both in the seed and by soil drenching. The fertilizer may have suppressed the beneficial bacterial effects on the growth of B. brizantha. P. fluorescens and B. pyrrocinia co-inoculated increased nitrate, protein, nitrogen concentration, Spad index (chlorophyll content), leaf area, number of tillers, net photosynthesis and total biomass production of B. brizantha plants. Our results point out to a potentially valuable source of practical information in the search of an eco-friendlier approach to increase pasture productivity.
基金supported by the National Natural Science Foundation of China(32102283 to Mingming Yang)the Science and Technology Major Project of China National Tobacco Corporation(110202101056(LS-16))the Science and Technology Project of Shaanxi Branch of China National Tobacco Corporation(KJ-2021-02 and KJ-2022-04).
文摘Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.In this work,we demonstrate that Le0752,an orotidine-5´-phosphate decarboxylase enzyme(ODCase)catalyzing a pivotal step of the UMP de novo biosynthesis pathway,is vital for HSAF-mediated antimicrobial activities and growth of L.enzymogenes OH11,but not for twitching motility.This gene regulates the production of HSAF by affecting the expression of lafB,a key gene in the HSAF biosynthesis operon,through the transcription factor Clp.Interestingly,bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases,whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I,which contains most ODCases from Gram-positive bacteria,Gram-negative bacteria and cyanobacteria.Moreover,the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.Together,these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in L.enzymogenes,which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.
基金National Natural Science Foundation of China(Nos.32370021 and 31860008)the Innovative team program of the Department of Education of Guangdong Province(Nos.2022KCXTD015 and 2022ZDJS020)+75 种基金the Project of Fungi Investigation in Tomur Mountains National Nature Reserve(2021-01-139-2)the National Natural Science Foundation of China(No.32100012)the Science and Technology Bureau of Guangzhou City(202201011618)to acknowledge Zhongkai University of Agriculture and Engineering,talent funding(Grant number KA210319288)the Guangzhou Science and Technology Plan Project(2023A04J1427)the Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China,Guangdong(KA21031C502)Zhongkai University of Agriculture and Engineering,Guangzhou,Guangdong,China(KA22016B746)for financial research supportthe UP System Balik PhD Program(OVPAA-BPhD-2022-02)Yunnan Department of Sciences and Technology of China(Grant No:202101AS070045,202205AM070007,202302AE090023,202303AP140001)the financial support provided by the Distinguished Scientist Fellowship Program(DSFP)at King Saud University in Riyadh,Saudi ArabiaScience&Engineering Research Board(SERB),Department of Science&Technology(DST)Govt.of India(Scheme No.CRG/2020/006053)Institution of Eminence(IoE)Scheme,Ministry of Human Resource and Development(MHRD),Govt.of India(No.R/Dev/D/IoE/Incentive/2021-22/32387)for providing financial supportGenivaldo Alves-Silva,Elisandro R.Drechsler-Santos,Rosa M.B.da Silveira,and Aristóteles Góes-Neto are supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(Grant No.153025/2022-0,310150/2022-1,308122/2019-4,308880/2022-6,respectively)the CNPq and FAPESC under the PROTAX program(Grant No.FAPESC 2021TR390,Grant No.CNPq 441821/2020-0)and M.E.Engels for collectionsde Desenvolvimento Científico e Tecnológico(CNPq),Brazil,that provided research grants to B.T.Goto(proc.306632/2022-5)support from the National Science and Technology Council is acknowledged(101-2621-B-019-001-MY3)supported by Prof.Dr.M.Schnittler(University of Greifswald,Germany),through the DFG project RESPONSE(RTG2010)study by Ralaiveloarisoa Asupported by the Today’s Flora for Tomorrow project funded by a generous donor through the Kew Foundation,and by a grant from the Bentham-Moxon Trustsupported by the Bulgarian National Science Fund(Grant no.KP-06-N51/10/16.11.2021)the herbarium at the Botanic Garden and Botanical Museum Berlin received support from the SYNTHESYS Plus Project http://www.synthesys.info,which is financed by the H2020 Research Infrastructures Programme(Grant no.DE-TAF-8193)providing tuition fee scholarship.The Center for Yunnan Plateau Biological Resources Protection and Utilization,College of Biological Resource and Food Engineering,Qujing Normal University is thanked for the facilities provided for the research worksupported by the National Natural Science Foundation of China(No.32060012)Muhammad Usman and Abdul Nasir Khalid would like to thank Dr.Kamran Habib,Dr.Muhammad Ali,Mr.Mohammad Aijaz Ahmad and Mr.Muhammad Shafiq for accompanying during the collection surveythe Science and Engineering Research Board(SERB)the Department of Science and Technology,Government of India,for their financial support through CRG/2020/000668 projectthe MACS Agharkar Research Institute in Pune,for providing the lab resources and motivating us in our research workFunding Scheme for Research and Innovation grant for the project“Discovery of new antivirals using cultures of filamentous fungi collected in Europe and Thailand as compound sources(JFS20ST-127 Antiviralfun,P2150844)”BIOTEC-Novartis collaboration for microbial bioprospecting project(P20-52031)to CSIR-HRDG,India,for providing her with financial assistance as part of the JRF fellowship(09/0670(13602)/2022-EMR-I)to Javier Etayo(Pamplona)for his valuable suggestionsNational Science Foundation of China(No.31870528)support from Iran National Science Foundation(INSF,no.4000655)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001 who provided a visiting professorship to the first authorsupporting this work with a PhD’s scholarship to LAS(140847/2019-7)a research grant to MESC(307569/2019-5)and for financial support in the Universal project(Process:437097/2018-8ERDF-A way of making Europe(Grant PID2021-128068NB-100)the Department of Biotechnology(DBT),Government of India(Grant no.BT/PR/0054/NDB/52/94/2007)support under the project‘Establishment of Microbial Culture Collection(NCMR-NCCS).’Gajanan Mane is thankful to the University Grants Commission,Delhi(India)for the senior research fellowship(File No.16-6(Dec.2017)/2018(NET/CSIR)Rohit Sharma thanks the Department of Biotechnology(DBT),Government of India(Grant no.BT/PR25490/NER/95/1220/2017 dated 28.06.2018),for financial supportthe grant from the Guangdong Rural Science and Technology Commissioner project(KTP20210313)the Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China,Guangdong(KA21031C501)the Innovative Team program of the Department of Education of Guangdong Province(2023KCXTD018/2022KCXTD015)Extramural Research-SERB,DST(EMR/2016/003078)Government of India for the financial assistanceto‘The PCCF’of the Tamil Nadu Forest Department for providing permission(E2/20458/2017)assistance and support during field visit in the Eastern Ghats.Malarvizhi Kaliyaperumal and Kezhocuyi Kezo thank RUSA 2.0(Theme-1,Group-1/2021/49)for providing grantthe Tamil Nadu State Council for Higher Education,Chennai(RGP/2019-20/MU/HECP-0040)for financial assistancethe National Science Foundation of China(No.31870528)support under statutory funds from the W.Szafer Institute of Botany,Polish Academy of Sciencesto ICMBio(Instituto Chico Mendes de Conservação da Biodiversidade)and IF(Instituto Florestal)for the collecting permits#38466-2 and#260108-001.102/2015,respectivelyinanced in part by Coordination of Improvement of Higher Education Personnel-Brazil(CAPES)-Finance Code 001 and by the National Council for Scientific and Technological Development(to LFPG and Proc.305269/2018-6 to AR)to LFPG and Proc.305269/2018-6 to AR)the Program CAPES-PrInt,process number 88887.310463/2018-00Mobility numbers#88887.468939/2019-00 and#88887.571230/2020-00the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES(processes numbers CAPES 88887.360774/2019-00)Conselho Nacional Desenvolvimento Científico e Tecnológico CNPq(ONDACBC:465764/2014-2 and NEXUS:441305/2017-2)the Fundação de AmparoàCiência e Tecnologia de Pernambuco-FACEPE(BFP-0046-5.01/20,APQ-0350-2.12/19 and APQ 1527-5.01/22)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq(Proc.312606/2022-2)the National Natural Science Foundation of China(Project ID:32060005)and the Yunnan Fundamental Research Project(202201AW070001)the National Natural Science Foundation of China(No.32260004)Yunnan Revitalization Talents Support Plan(High-End Foreign Experts Program)the Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River for their support.Xing-Can Peng and Ting-Chi Wen acknowledge the support by the National Natural Science Foundation of China(No.32060012)Department of Sciences and Technology of China(No.202202AE090091)the National Natural Science Foundation of China(Grant No.32200015)the foundation of the Guangzhou bureau of science and technology(Grant No.2023A04J1425)Thailand Science Research and Innovation(TSRI)for the grant“Biodiversity,taxonomy,phylogeny and evolution of Colletotrichum on Avocado,Citrus,Durian and Mango in northern Thailand”(Grant no.652A01003)the National Natural Science Foundation of China(No.NSFC 32260004)and the Yunnan Revitalization Talents Support Plan(Young Talents Program and High-End Foreign Experts Program)The Center for Yunnan Plateau Biological Resources Protection and Utilization,College of Biological Resource and Food Engineering,Qujing Normal University for the facilities provided for the research workthe National Natural Science Foundation of China(Grant no.31600019)the Modern Agricultural Industry Technology System Flower Innovation Team of Guangdong Province(Grant no.2023KJ121)the Project of Educational Commission of Guangdong Province of China(Grant no.2021KTSCX045)the research productivity fellowship(Grant No.303834/2020-0)the Eminent scholar offered by Kyun Hee Universitythe Chinese Research Fund,Grant number E1644111K1,titled“Flexible introduction of the high-level expert program,Kunming Institute of Botany,Chinese Academy of Sciences”for financial supportthe Italian National Antarctic Research Program for funding Antarctic campaingssupport to the Mycological Section of the MNA and the Culture Collection of Antarctic fungi(MNA-CCFEE),University of Tuscia,Italy.
文摘This article is the 17th in the Fungal Diversity Notes series which allows the researchers to publish fungal collections with updated reports of fungus-host and fungus-geography.Herein we report 97 taxa with four new genera distributed in three phyla(Ascomycota,Glomeromycota and Mucoromycota),11 classes,38 orders and 62 families collected from various regions worldwide.This collection is further classified into taxa from 69 genera with four novel genera namely Jinshana,Lithophyllospora,Parapolyplosphaeria and Stegonsporiicola.Furthermore,71 new species,21 new records,one new combination and four novel phylogenetic placements are provided.The new species comprise Acrocalymma estuarinum,Aggregatorygma isidiatum,Alleppeysporonites elsikii,Amphibambusa aquatica,Apiospora hongheensis,Arthrobotrys tachengensis,Calonectria potisiana,Collariella hongheensis,Colletotrichum squamosae,Corynespora chengduensis,Diaporthe beijingensis,Dicellaesporites plicatus,Dicellaesporites verrucatus,Dictyoarthrinium endophyticum,Distoseptispora chiangraiensis,Dothiora eucalypti,Epicoccum indicum,Exesisporites chandrae,Fitzroyomyces pseudopandanicola,Fomitiporia exigua,Fomitiporia rondonii,Fulvifomes subthailandicus,Gigaspora siqueirae,Gymnopus ailaoensis,Hyalorbilia yunnanensis,Hygrocybe minimiholatra,H.mitsinjoensis,H.parviholatra,H.solis,H.vintsy,Helicogermslita kunmingensis,Jinshana tangtangiae,Kirschsteiniothelia dujuanhuensis,Lamproderma subcristatum,Leucoagaricus madagascarensis,Leucocoprinus mantadiaensis,Lithophyllospora australis,Marasmius qujingensis,Melomastia aquilariae,Monoporisporites jansoniusii,M.pattersonii,Monoporisporites valdiyae,Mucispora maesotensis,Mucor soli,Muyocopron yunnanensis,Nigrospora tomentosae,Ocellularia psorirregularis,Ophiocordyceps duyunensis,Oxneriaria nigrodisca,Oxydothis aquatica,O.filiforme,Phacidiella xishuangbannaensis,Phlebiopsis subgriseofuscescens,Pleurothecium takense,Pleurotus tuber-regium,Pseudochaetosphaeronema puerensis,Pseudodactylaria guttulate,Racheliella chinensis,Rhexoacrodictys fangensis,Roussoella neoaquatica,Rubroboletus pruinosus,Sanghuangporus subzonatus,Scytalidium assmuthi,Shrungabeeja kudremukhensis,Spirographa skorinae,Stanjehughesia bambusicola,Stegonsporiicola aurantiaca,Umbelopsis hingganensis,Vararia tenuata,Verruconis pakchongensis,Wongia bandungensis,and Zygosporium cymodoceae.The new combination is Parapolyplosphaeria thailandica(≡Polyplosphaeria thailandica).The 21 new hosts,geographical and habitat records comprise Acrocalymma fici,Apiculospora spartii,Aspergillus subramanianii,Camposporium ramosum,Clonostachys rogersoniana,Colletotrichum brevisporum,C.plurivorum,Collybiopsis gibbosa,Dictyosporium tratense,Distoseptispora adscendens,Exosporium livistonae,Ganoderma gibbosum,Graphis mikuraensis,Gymnosporangium paraphysatum,Lasiodiplodia thailandica,Moesziomyces bullatus,Penicillium cremeogriseum,P.echinulonalgiovense,P.javanicum,P.lanosocoeruleum,P.polonicum,and Pleurotus tuber-regium.Graphis chlorotica,G.panhalensis and G.parilis are given as novel phylogenetic placements.In addition,we provide the morphology of Tarzetta tibetensis which was missing in the previous Fungal Diversity Notes 1611–1716.Identification of characterization of all these taxa are supported by morphological and multigene phylogenetic analyses.
文摘Plant growth-promoting rhizobacteria(PGPR)contain various biocontrol bacteria with broad-spectrum antimicrobial activity,and their single species has been extensively applied to control crop diseases.The development of complex biocontrol community by mixing two or more PGPR members together is a promising strategy to enlarge the efficacy and scope of biocontrol.However,an effective method to assess the natural compatibility of PGPR members has not yet been established to date.Here,we developed such a tool by using the bacterial contactdependent antibacterial activity(CDAA)as a probe.We showed that the CDAA events are common in two-species interactions in the four selected representative PGPRs,represented by the incompatible interaction of Lysobacter enzymogenes strain OH11(OH11)and Lysobacter antibioticus strain OH13(OH13).We further showed that the CDAA between OH11 and OH13 is jointly controlled by a contact-dependent killing device,called the type IV secretion system(T4SS).By deleting the respective T4SS synthesis genes,the T4SS in both strains was co-inactivated and this step unlocked their natural CDAA,resulting in an engineered,compatible mutant alliance that co-displayed antibacterial and antifungal activity.Therefore,this study reveals that releasing bacterial CDAA is effective to rationally engineer the biocontrol community.
基金supported by Project of the Dominant Discipline in Jiangsu Province,China(No.80900246 to X.S.)General Research Fund of Hong Kong,China(No.11102720,21103018,11101619,11103221 and 11103221 to X.D.)+1 种基金National Natural Science Foundation of China(No.32272619 to X.S.,No.31870116 and 32172358 to X.D.)Tung Biomedical Sciences Centre,China(No.9609313 to X.D.).
文摘In Pseudomonas aeruginosa(P.aeruginosa),transcription factors(TFs)are important mediators in the genetic regulation of adaptability and pathogenicity to respond to multiple environmental stresses and host defences.The P.aeruginosa genome harbours 371 putative TFs;of these,about 70 have been shown to regulate virulence-associated phenotypes by binding to the promoters of their target genes.Over the past three decades,several techniques have been applied to identify TF binding sites on the P.aeruginosa genome,and an atlas of TF binding patterns has been mapped.The virulence-associated regulons of TFs show complex crosstalk in P.aeruginosa's regulatory network.In this review,we summarise the recent literature on TF regulatory networks involved in the quorum-sensing system,biofilm formation,pyocyanin synthesis,motility,the type III secretion system,the type VI secretion system,and oxidative stress responses.We discuss future perspectives that could provide insights and targets for preventing clinical infections caused by P.aeruginosa based on the global regulatory network of transcriptional regulators.