Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges...Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).展开更多
Ammonium toxicity in plants remains poorly understood despite extensive research.While nitrate is known to benefit plant growth,the synergistic effects of nitrate in mitigating ammonium toxicity,even at low concentrat...Ammonium toxicity in plants remains poorly understood despite extensive research.While nitrate is known to benefit plant growth,the synergistic effects of nitrate in mitigating ammonium toxicity,even at low concentrations,are not fully elucidated.This review delves into the physiological and molecular nature of this phenomenon.To date,nitrate-dependent alleviation of ammonium toxicity is the result of cumulative consequences of the role of nitrate as a nutrient and signal in plant performance.The ability to counteract the ammonium-induced acidification through nitrate uptake and metabolism,the enhancement of potassium uptake as an essential nitrate counterion,and the nitratedependent signaling of key factors involved in ammonium assimilation,ROS scavenging,and growth hormone biosynthesis,are the most relevant hallmarks.In addition,evidence suggests that the availability of nitrate and ammonium has driven ecological selection in plants,determining current N preferences,and may have led to the selection of nitrate-dependent and ammonium-sensitive domesticated crops and the inefficient use of N fertilizers in agriculture.As ammonium toxicity limits N fertilization options and reduces agricultural yields,when it could be a more sustainable and cheaper alternative to nitrate,this review provides a better understanding of how plants use nitrate to counteract the problematic aspects of ammonium nutrition.展开更多
Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations ...Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations of theseproducts are not without environmental,ecological,and cost concerns and the associated climate-change challenges.To alleviate this long-standing pressure on agriculture,designing and developing more biocompatible andsustainable plant stimulants are among the primary focuses of agricultural management.Over the recent decades,the field has witnessed significant progress in emerging naturally derived or nature-inspired nano-biostimulantswith large-active-surface areas,including bio-compounds,biopolymers,and nanocarbons.However,the extraction/preparation of these products may apply additional costs or require specific equipment.More recently,thefield's attention has shifted to the sustainable application of chemical-additive-free biostimulants towards practicalapplications in nano-agriculture.Herein,we rationally designed and reported the first evidence and elucidationon biostimulant impacts of plant-self-derived nano-extracts from donor Arabidopsis thaliana as a model forinducing mirror biostimulant activities in conspecific host seeds,seedlings,and plants.Moreover,we assessed theeffect of donor plants'age on short,mid-,and long-term biocompatibility,growth,and development/maturationof the recipient plants for up to around 30 days.As a proof-of-concept,we found these autologous bio-extractscould effectively promote seed sprouting,seedling germination,and the development of soil-drenched plantsof the same types.Our transmission-electron microscopy characterization of root/shoot pieces shows the presenceof multiple phyto-compounds,including microtubules/actin filaments,cell vacuoles,Golgi stacks/endoplasmicreticulum,cell wall polysaccharide-based cellulose fibers,and organic amorphous nanoparticles and clusters ofcarbon quantum dots in the structure of these extracts.This personalized plant stimulation may induce furthergrowth/defense-related mechanisms,setting new paradigms toward reducing the agrochemical inputs.展开更多
The oral secretions of insect herbivores are complex mixtures of organic and inorganic solutes and enzymes that are deposited onto plant tissues during the feeding process.Some specific components of insect oral secre...The oral secretions of insect herbivores are complex mixtures of organic and inorganic solutes and enzymes that are deposited onto plant tissues during the feeding process.Some specific components of insect oral secretions have been shown to confer important functions in mediating plant–insect interactions at the molecular level.In this review,we examined the biochemical studies of insect oral secretions to summarize the current knowledge of their compositions.We then moved beyond the functional studies of components of oral secretions,and focused on the literature that pinpointed specific molecular targets of these compounds.Finally,we highlighted the investigations of oral secretion components in the context of insect physiology,which shed light on the potential evolutionary trajectory of these multi-functional molecules.展开更多
Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but ...Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but the precise consequences of floral larceny on plant reproductive success remain contentious.We conducted a comprehensive meta-analysis of 153 studies across 120 plant species,using 14 moderators to assess the effects of floral larceny on plant reproductive success and examine the key moderators.We found that floral larceny negatively impacts flower traits,pollinator visitation,pollen deposition,and fruit set,while having a neutral effect on critical female fitness indicators,such as seed set and seed quality,as well as on male fitness.By altering pollinator behavior,floral larceny may reduce geitonogamy,potentially enhancing genetic diversity.Additionally,factors such as pollinator type,plant mating system,and pollen limitation were identified as key moderators of these effects.Our analysis reveals an ultimately neutral effect of floral larceny on plant reproductive success,with potential benefits in certain contexts.These findings suggest that floral larceny plays a complex and multifaceted role within plant-pollinator interactions,facilitating the evolutionary stability and coexistence of floral larcenists and host plants.展开更多
As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of ...As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.展开更多
Myeloblastosis(MYB)transcription factors,particularly those in the R2R3 MYB subclass,are pivotal in plant growth,development,and environmental stress responses.As one of the largest transcription factor families in pl...Myeloblastosis(MYB)transcription factors,particularly those in the R2R3 MYB subclass,are pivotal in plant growth,development,and environmental stress responses.As one of the largest transcription factor families in plants,the MYB family significantly regulates plant secondary metabolism,including the biosynthetic pathways for phenylpropanoids,which are crucial for stress resistance.This review presents a comprehensive overview of MYB transcription factor classification and their regulatory mechanisms in plant metabolism and stress responses.We discuss the roles of MYB transcription factors in biotic stress resistance,such as defense against pathogens and pests,and in abiotic stress tolerance,including responses to drought and salinity.Special attention is given to the interactions of R2R3 MYB with other transcription factors and co-repressors,focusing on how these synergistic or antagonistic relationships modulate physiological processes.The multifunctional role of R2R3 MYBs in stress responses positions them as promising targets for enhancing crop resilience through genetic breeding.Furthermore,this review highlights potential applications of MYB transcription factors in developing stress-resistant crops and their utility in plant resistant breeding programs.展开更多
Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmen...Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.展开更多
The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and la...The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.展开更多
The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant specie...The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant species,and phylogenetic relationships between native and naturalized plant species on the plateau is of great importance.Here,we analyze a comprehensive dataset including all species of native and naturalized vascular plants known to occur in the core part of the QTP.We use net relatedness index(NRI)and nearest taxon index(NTI),which reflect deep and shallow evolutionary histories,respectively,to quantify phylogenetic relatedness among angiosperm species.The QTP included in this study(1,448,815 km^(2))has 9086 and 314 species of native and naturalized non-native vascular plants,respectively.We find that the naturalized angiosperm species are phylogenetically clustered with respect to the species pool including all native and naturalized angiosperm species on the QTP included in this study,regardless of whether NRI or NTI is used.For the eight regions within the QTP included in this study,NRI and NTI of naturalized angiosperms are positive in seven regions with respect to their respective regional species pools,reflecting phylogenetic clustering.Thus,naturalized angiosperm species are a phylogenetically clustered subset of all angiosperm species on the QTP,regardless of whether the studied plateau as a whole or its constituent regions are considered.展开更多
Advances in gene editing and natural genetic variability present significant opportunities to generate novel alleles and select natural sources of genetic variation for horticulture crop improvement.The genetic improv...Advances in gene editing and natural genetic variability present significant opportunities to generate novel alleles and select natural sources of genetic variation for horticulture crop improvement.The genetic improvement of crops to enhance their resilience to abiotic stresses and new pests due to climate change is essential for future food security.The field of genomics has made significant strides over the past few decades,enabling us to sequence and analyze entire genomes.However,understanding the complex relationship between genes and their expression in phenotypes-the observable characteristics of an organism-requires a deeper understanding of phenomics.Phenomics seeks to link genetic information with biological processes and environmental factors to better understand complex traits and diseases.Recent breakthroughs in this field include the development of advanced imaging technologies,artificial intelligence algorithms,and large-scale data analysis techniques.These tools have enabled us to explore the relationships between genotype,phenotype,and environment in unprecedented detail.This review explores the importance of understanding the complex relationship between genes and their expression in phenotypes.Integration of genomics with efficient high throughput plant phenotyping as well as the potential of machine learning approaches for genomic and phenomics trait discovery.展开更多
Plant height is an important trait that affects the crop yield and overall productivity.The Green Revolution,which began in the 1960s,brought about a remarkable surge in grain production,largely credited to the introd...Plant height is an important trait that affects the crop yield and overall productivity.The Green Revolution,which began in the 1960s,brought about a remarkable surge in grain production,largely credited to the introduction of new wheat(Triticum aestivum)and rice(Oryza sativa)varieties,specifically the dwarf variants.Short plants offer several advantages,including denser planting,resistance to lodging,and easier application of fertilizers or fungicides(Stokstad,2023).展开更多
Remodeling plant intracellular nucleotide-binding leucine-rich repeat immune receptors(NLRs)to engineer synthetic disease-resistance genes has emerged as a promising approach to achieving broad-spectrum disease resist...Remodeling plant intracellular nucleotide-binding leucine-rich repeat immune receptors(NLRs)to engineer synthetic disease-resistance genes has emerged as a promising approach to achieving broad-spectrum disease resistance.But strategies for expanding NLR recognition spectra[[1],[2],[3],[4],[5]]are often limited by the rapid evolution of pathogens and pests.In our recent study,we developed an innovative strategy to engineer broad-spectrum,durable and complete disease resistance in plants by remodeling autoactive NLRs into protease-activated switches[6].展开更多
Cold stress widely impairs the quality and yield of tea plants. The miR164 family and its target NAC transcription factor have been identified as crucial regulators in response to cold stress. However, the role of miR...Cold stress widely impairs the quality and yield of tea plants. The miR164 family and its target NAC transcription factor have been identified as crucial regulators in response to cold stress. However, the role of miR164 and CsNAC in cold tolerance in tea plants was little understood. In our study, the expression level of CsMIR164a was significantly reduced under cold stress and significantly and negatively correlated with that of CsNAC1.5' RACE and GUS histochemical assays showed that CsNAC1 was cleaved by CsMIR164a. The CsMIR164a-silenced tea leaves promoted the expression levels of CsNAC1 and CsCBFs and exhibited greater cold tolerance. Also, the overexpression of CsNAC1 enhanced cold tolerance in transgenic Arabidopsis plants by promoting the expression levels of AtCBFs. In contrast, the heterologous overexpression of CsMIR164a in Arabidopsis decreased the expression level of AtNACs and AtCBFs and thus impaired cold tolerance. Additionally, silencing of CsNAC1 impaired the expression levels of CsCBFs, resulting in greater cold sensitivity in tea leaves. Our present study demonstrated that the miR164a-CsNAC1 module may play a negative role in the cold tolerance of tea plants via the CsCBF-dependent pathway.展开更多
Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate...Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.展开更多
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor...Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.展开更多
The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced...The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.展开更多
Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrat...Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.展开更多
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金the Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia(RCEECA),the construction and joint research for the China-Tajikistan“Belt and Road”Joint Laboratory on Biodiversity Conservation and Sustainable Use(2024YFE0214200)the Shanghai Cooperation Organization Partnership and International Technology Cooperation Plan of Science and Technology Projects(2023E01018,2025E01056)the Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2024VBC0006).
文摘Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).
基金supported by an MCIN RyC Programme MCIN/AEI/10.13039/501100011033the‘European Union Next Generation EU/PRTR’under grant no.RYC2021-032345-I+1 种基金supported by the AEI(grant no.PID2019-107463RJ-I00/AEI/10.13039/501100011033)the Regional Research and Development Programme of the Government of Navarre(call 2019,project NitroHealthy,PC068).
文摘Ammonium toxicity in plants remains poorly understood despite extensive research.While nitrate is known to benefit plant growth,the synergistic effects of nitrate in mitigating ammonium toxicity,even at low concentrations,are not fully elucidated.This review delves into the physiological and molecular nature of this phenomenon.To date,nitrate-dependent alleviation of ammonium toxicity is the result of cumulative consequences of the role of nitrate as a nutrient and signal in plant performance.The ability to counteract the ammonium-induced acidification through nitrate uptake and metabolism,the enhancement of potassium uptake as an essential nitrate counterion,and the nitratedependent signaling of key factors involved in ammonium assimilation,ROS scavenging,and growth hormone biosynthesis,are the most relevant hallmarks.In addition,evidence suggests that the availability of nitrate and ammonium has driven ecological selection in plants,determining current N preferences,and may have led to the selection of nitrate-dependent and ammonium-sensitive domesticated crops and the inefficient use of N fertilizers in agriculture.As ammonium toxicity limits N fertilization options and reduces agricultural yields,when it could be a more sustainable and cheaper alternative to nitrate,this review provides a better understanding of how plants use nitrate to counteract the problematic aspects of ammonium nutrition.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)grant number 525793193Prof.Stefan Eimer and Ms.Marion Basoglu at Goethe University for their assistance in TEM characterization+1 种基金Mr.Holger Schranz for his help in plant cultivation and maintenanceProf.Bruno M.Moerschbacher from the Institute of Plant Biology and Biotechnology at the Münster University。
文摘Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations of theseproducts are not without environmental,ecological,and cost concerns and the associated climate-change challenges.To alleviate this long-standing pressure on agriculture,designing and developing more biocompatible andsustainable plant stimulants are among the primary focuses of agricultural management.Over the recent decades,the field has witnessed significant progress in emerging naturally derived or nature-inspired nano-biostimulantswith large-active-surface areas,including bio-compounds,biopolymers,and nanocarbons.However,the extraction/preparation of these products may apply additional costs or require specific equipment.More recently,thefield's attention has shifted to the sustainable application of chemical-additive-free biostimulants towards practicalapplications in nano-agriculture.Herein,we rationally designed and reported the first evidence and elucidationon biostimulant impacts of plant-self-derived nano-extracts from donor Arabidopsis thaliana as a model forinducing mirror biostimulant activities in conspecific host seeds,seedlings,and plants.Moreover,we assessed theeffect of donor plants'age on short,mid-,and long-term biocompatibility,growth,and development/maturationof the recipient plants for up to around 30 days.As a proof-of-concept,we found these autologous bio-extractscould effectively promote seed sprouting,seedling germination,and the development of soil-drenched plantsof the same types.Our transmission-electron microscopy characterization of root/shoot pieces shows the presenceof multiple phyto-compounds,including microtubules/actin filaments,cell vacuoles,Golgi stacks/endoplasmicreticulum,cell wall polysaccharide-based cellulose fibers,and organic amorphous nanoparticles and clusters ofcarbon quantum dots in the structure of these extracts.This personalized plant stimulation may induce furthergrowth/defense-related mechanisms,setting new paradigms toward reducing the agrochemical inputs.
基金received financial support from the Shenzhen Science and Technology Program,China(KQTD20180411143628272)the special funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District,China(PT202101-02)。
文摘The oral secretions of insect herbivores are complex mixtures of organic and inorganic solutes and enzymes that are deposited onto plant tissues during the feeding process.Some specific components of insect oral secretions have been shown to confer important functions in mediating plant–insect interactions at the molecular level.In this review,we examined the biochemical studies of insect oral secretions to summarize the current knowledge of their compositions.We then moved beyond the functional studies of components of oral secretions,and focused on the literature that pinpointed specific molecular targets of these compounds.Finally,we highlighted the investigations of oral secretion components in the context of insect physiology,which shed light on the potential evolutionary trajectory of these multi-functional molecules.
基金support by the National Natural Science Foundation of China(32170241,32160054,and 32470241)supported by the Chinese Academy of Science's PIFI Fellowship Initiative(2024PVC0046).
文摘Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but the precise consequences of floral larceny on plant reproductive success remain contentious.We conducted a comprehensive meta-analysis of 153 studies across 120 plant species,using 14 moderators to assess the effects of floral larceny on plant reproductive success and examine the key moderators.We found that floral larceny negatively impacts flower traits,pollinator visitation,pollen deposition,and fruit set,while having a neutral effect on critical female fitness indicators,such as seed set and seed quality,as well as on male fitness.By altering pollinator behavior,floral larceny may reduce geitonogamy,potentially enhancing genetic diversity.Additionally,factors such as pollinator type,plant mating system,and pollen limitation were identified as key moderators of these effects.Our analysis reveals an ultimately neutral effect of floral larceny on plant reproductive success,with potential benefits in certain contexts.These findings suggest that floral larceny plays a complex and multifaceted role within plant-pollinator interactions,facilitating the evolutionary stability and coexistence of floral larcenists and host plants.
基金the Second Tibetan Plateau Scientific Expedition and Research program(2024QZKK0200)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U23A20149)+2 种基金Yunnan Key R&D Program(202403AC00028)for supporting the fieldexcursion,samples collections and ecological experiment in QTP.Rest co-authors acknowledge the Yunnan Innovation Team Project(202305AS350004 to Yang Yang)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053 to Jianguo Chen)the CAS“Light of West China”Program(xbzg-zdsys-202319 to Bo Song),Yunnan Revitalization Talent Support Program“Young Talent”Project(to Yazhou Zhang),National Youth Talent Support Program(to Yang Niu)and Postdoctoral(oversea)Fund of Ministry of Education of China(to Zihan Jiang)。
文摘As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.
基金supported by the Faculty Startup Fund from Jining Medical University,the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2023QC309)the National Natural Science Foundation of China(Grant No.32102236)。
文摘Myeloblastosis(MYB)transcription factors,particularly those in the R2R3 MYB subclass,are pivotal in plant growth,development,and environmental stress responses.As one of the largest transcription factor families in plants,the MYB family significantly regulates plant secondary metabolism,including the biosynthetic pathways for phenylpropanoids,which are crucial for stress resistance.This review presents a comprehensive overview of MYB transcription factor classification and their regulatory mechanisms in plant metabolism and stress responses.We discuss the roles of MYB transcription factors in biotic stress resistance,such as defense against pathogens and pests,and in abiotic stress tolerance,including responses to drought and salinity.Special attention is given to the interactions of R2R3 MYB with other transcription factors and co-repressors,focusing on how these synergistic or antagonistic relationships modulate physiological processes.The multifunctional role of R2R3 MYBs in stress responses positions them as promising targets for enhancing crop resilience through genetic breeding.Furthermore,this review highlights potential applications of MYB transcription factors in developing stress-resistant crops and their utility in plant resistant breeding programs.
基金supported by the National Key Research and Development Program of China(2023YFF0805602)National Natural Science Foundation of China(32225032,32001192,32271597)+1 种基金the Innovation Base Project of Gansu Province(2021YFF0703904)the Science and Technology Program of Gansu Province(24JRRA515,22JR5RA525,23JRRA1157).
文摘Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),Grant No.2019QZKK0606.
文摘The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.
基金supported by grants from the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20050203)+4 种基金the National Natural Science Foundation of China-Yunnan joint fund to support key projects(U1802232)the Major Program for Basic Research Project of Yunnan Province(202101BC070002)the Yunnan Young&Elite Talents Project(YNWR-QNBJ-2019-033)the Ten Thousand Talents Program of Yunnan Province(202005AB160005)the Chinese Academy of Sciences“Light of West China”Program.
文摘The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant species,and phylogenetic relationships between native and naturalized plant species on the plateau is of great importance.Here,we analyze a comprehensive dataset including all species of native and naturalized vascular plants known to occur in the core part of the QTP.We use net relatedness index(NRI)and nearest taxon index(NTI),which reflect deep and shallow evolutionary histories,respectively,to quantify phylogenetic relatedness among angiosperm species.The QTP included in this study(1,448,815 km^(2))has 9086 and 314 species of native and naturalized non-native vascular plants,respectively.We find that the naturalized angiosperm species are phylogenetically clustered with respect to the species pool including all native and naturalized angiosperm species on the QTP included in this study,regardless of whether NRI or NTI is used.For the eight regions within the QTP included in this study,NRI and NTI of naturalized angiosperms are positive in seven regions with respect to their respective regional species pools,reflecting phylogenetic clustering.Thus,naturalized angiosperm species are a phylogenetically clustered subset of all angiosperm species on the QTP,regardless of whether the studied plateau as a whole or its constituent regions are considered.
基金supported this research through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(2019R1A6A1A11052070)。
文摘Advances in gene editing and natural genetic variability present significant opportunities to generate novel alleles and select natural sources of genetic variation for horticulture crop improvement.The genetic improvement of crops to enhance their resilience to abiotic stresses and new pests due to climate change is essential for future food security.The field of genomics has made significant strides over the past few decades,enabling us to sequence and analyze entire genomes.However,understanding the complex relationship between genes and their expression in phenotypes-the observable characteristics of an organism-requires a deeper understanding of phenomics.Phenomics seeks to link genetic information with biological processes and environmental factors to better understand complex traits and diseases.Recent breakthroughs in this field include the development of advanced imaging technologies,artificial intelligence algorithms,and large-scale data analysis techniques.These tools have enabled us to explore the relationships between genotype,phenotype,and environment in unprecedented detail.This review explores the importance of understanding the complex relationship between genes and their expression in phenotypes.Integration of genomics with efficient high throughput plant phenotyping as well as the potential of machine learning approaches for genomic and phenomics trait discovery.
基金supported by grants from the National Natural Science Foundation of China(32270290)the Shanghai Engineering Research Center of Plant Germplasm Resources(17DZ2252700).
文摘Plant height is an important trait that affects the crop yield and overall productivity.The Green Revolution,which began in the 1960s,brought about a remarkable surge in grain production,largely credited to the introduction of new wheat(Triticum aestivum)and rice(Oryza sativa)varieties,specifically the dwarf variants.Short plants offer several advantages,including denser planting,resistance to lodging,and easier application of fertilizers or fungicides(Stokstad,2023).
基金supported by the Biological Breeding-National Science and Technology Major Project(2024ZD04077).
文摘Remodeling plant intracellular nucleotide-binding leucine-rich repeat immune receptors(NLRs)to engineer synthetic disease-resistance genes has emerged as a promising approach to achieving broad-spectrum disease resistance.But strategies for expanding NLR recognition spectra[[1],[2],[3],[4],[5]]are often limited by the rapid evolution of pathogens and pests.In our recent study,we developed an innovative strategy to engineer broad-spectrum,durable and complete disease resistance in plants by remodeling autoactive NLRs into protease-activated switches[6].
基金supported by the Anhui University Collaborative Innovation Project, China (GXXT-2020080)the Scientific Research Project of Anhui Provincial Colleges and Universities, China (2023AH040136)。
文摘Cold stress widely impairs the quality and yield of tea plants. The miR164 family and its target NAC transcription factor have been identified as crucial regulators in response to cold stress. However, the role of miR164 and CsNAC in cold tolerance in tea plants was little understood. In our study, the expression level of CsMIR164a was significantly reduced under cold stress and significantly and negatively correlated with that of CsNAC1.5' RACE and GUS histochemical assays showed that CsNAC1 was cleaved by CsMIR164a. The CsMIR164a-silenced tea leaves promoted the expression levels of CsNAC1 and CsCBFs and exhibited greater cold tolerance. Also, the overexpression of CsNAC1 enhanced cold tolerance in transgenic Arabidopsis plants by promoting the expression levels of AtCBFs. In contrast, the heterologous overexpression of CsMIR164a in Arabidopsis decreased the expression level of AtNACs and AtCBFs and thus impaired cold tolerance. Additionally, silencing of CsNAC1 impaired the expression levels of CsCBFs, resulting in greater cold sensitivity in tea leaves. Our present study demonstrated that the miR164a-CsNAC1 module may play a negative role in the cold tolerance of tea plants via the CsCBF-dependent pathway.
文摘Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.
基金supported by the National Key Research and Development Plan Project Sub-Topic of China(Grant Nos.2022YFD1901500 and 2022YFD1901505-07)the National Natural Science Foundation of China(Grant No.32260531)+1 种基金the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China(Grant No.Qiankehezhongyindi[2023]8)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China(Grant No.Qianjiaoji[2023]007).
文摘Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA26050301-02)。
文摘The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.
基金funded by National Natural Science Foundation of China(grant no.32301870 to Chen Lin)Natural Science Foundation of Jiangsu Province(grant no.BK20230568 to Chen Lin)+3 种基金the Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund(grant no.CX(24)3124 to Chen Lin)Outstanding Ph.D.Programin Yangzhou(grant no.YZLYJFJH2022YXBS147 to Chen Lin)the General Project of Basic Scientific Research to colleges and universities in Jiangsu Province(grant no.22KJB210019 toChen Lin)the Priority Academic Program Development of Jiangsu Higher Education Institutions is greatly acknowledged.
文摘Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.