期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Progress of Planetary Science in China
1
作者 HUI Hejiu RONG Zhaojin +4 位作者 ZHANG Jinhai HU Sen LIN Honglei WEI Yong LIN Yangting 《空间科学学报》 CAS CSCD 北大核心 2022年第4期754-771,共18页
The national and international progress in deep space exploration has greatly promoted the development of planetary science in China.Substantial progress in different areas of planetary science has been achieved in 20... The national and international progress in deep space exploration has greatly promoted the development of planetary science in China.Substantial progress in different areas of planetary science has been achieved in 2020-2022.In this report,we summarize the research achievements obtained in China in the last three years.The achievements include the research on geology,geochemistry,and space physics of the Moon,Mars,Mercury,Venus,giant planets,asteroids,and comets.The recent work on science objectives,mission payloads,and analytical capabilities that supports the lunar and deep space exploration program of China has also been introduced in this report.Finally,we report the progress on developments of discipline and research team of planetary science in China. 展开更多
关键词 Planetary science PROGRESS EXPLORATION MISSION Solar system
在线阅读 下载PDF
Complexity of the NWA 773 Clan:New Evidence from Lunar Olivine Gabbro NWA 6950
2
作者 Qi He Long Xiao +3 位作者 Ioannis Baziotis Xiaochao Che Yuqi Qian Jiawei Zhao 《Journal of Earth Science》 2025年第5期2224-2239,共16页
NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of ... NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of Fe-Ni metal.The meteorite has also undergone intense shock metamorphism,which is evidenced by the presence of ringwoodite,tuite,and xieite(a type of chromite with a CaTi_(2)O_(4)structure)within the shock melt veins(SMVs).The texture,mineral modal abundances,and bulk compositions(measured from the SMVs)of NWA 6950 are similar to those of the NWA 773 clan,as are the concentrations and patterns of rare-earth-elements in olivine,pyroxene,plagioclase,and phosphate.In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3133±11 and 3129±23 Ma,which is consistent with age data provided by Shaulis et al.(2017).Further,the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333(3038±20 Ma;Merle et al.,2020).The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon.This suggests that lunar volcanism may have shifted from extrusivedominated to intrusive-dominated at approximately 3.1 Ga,resulting in the widespread distribution of gabbro lithologies on the Moon. 展开更多
关键词 lunar rocks GEOCHRONOLOGY geochemistry METEORITES shock metamorphism MAGMATISM planetary geology
原文传递
Titanium partitioning between pyroxenes and lunar basaltic melts:An experimental perspective
3
作者 Huan Gong Jing Yang Wei Du 《Acta Geochimica》 2025年第5期931-944,共14页
The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt r... The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains. 展开更多
关键词 Lunar basalt Chang’E-5 High pressure and high temperature experiments Partitioning coefficient
在线阅读 下载PDF
Space weathering characteristics of lunar permanently shadowed regions soils:Evidence from experimental simulation
4
作者 Zixuan Han Yang Li +7 位作者 Chen Li Ronghua Pang Sizhe Zhao Zhuang Guo Kairui Tai Rui Li Zhenhao Hu Li Liu 《Acta Geochimica》 2025年第1期1-10,共10页
Permanently shadowed regions(PSRs)on the Moon are potential reservoirs for water ice,making them hot spots for future lunar exploration.The water ice in PSRs would cause distinctive changes in space weathering there,i... Permanently shadowed regions(PSRs)on the Moon are potential reservoirs for water ice,making them hot spots for future lunar exploration.The water ice in PSRs would cause distinctive changes in space weathering there,in particular reduction-oxidation processes that diff er from those in illuminated regions.To determine the characteristics of products formed during space weathering in PSRs,the lunar meteorite NWA 10203 with artifi cially added water was irradiated with a nanosecond laser to simulate a micro-meteorite bombardment of lunar soil containing water ice.The TEM results of the water-incorporated sample showed distinct amorphous rims that exhibited irregular thickness,poor stratifi cation,the appearance of bubbles,and a reduced number of npFe^(0).Additionally,EELS analysis showed the presence of ferric iron at the rim of the nanophase metallic iron particles(npFe^(0))in the amorphous rim with the involvement of water.The results suggest that water ice is another possible factor contributing to oxidation during micrometeorite bombardment on the lunar surface.In addition,it off ers a reference for a new space weathering model that incorporates water in PSRs,which could be widespread on asteroids with volatiles. 展开更多
关键词 Space weathering Permanently shadowed regions The Moon laser irradiation Water ice
在线阅读 下载PDF
Subsurface Structures at the Chang'e-3 Landing Site: Interpretations from Orbital and In-Situ Imagery Data 被引量:3
5
作者 Le Qiao Zhiyong Xiao +1 位作者 Jiannan Zhao Long Xiao 《Journal of Earth Science》 SCIE CAS CSCD 2016年第4期707-715,共9页
The Chang'e-3(CE-3) spacecraft successfully landed on one of the youngest mare surfaces on the Moon in December 2013. The Yutu rover carried by CE-3 was equipped with a radar system that could reveal subsurface str... The Chang'e-3(CE-3) spacecraft successfully landed on one of the youngest mare surfaces on the Moon in December 2013. The Yutu rover carried by CE-3 was equipped with a radar system that could reveal subsurface structures in unprecedented details, which would facilitate understanding regional and global evolutionary history of the Moon. Based on regional geology, cratering scaling, and morphological study, here we quantify the subsurface structures of the landing site using high-resolution orbital and in-situ imagery data. Three layers of lunar regolith, two layers of basalt units, and one layer of ejecta deposits are recognized at the subsurface of the landing site, and their thicknesses are deduced based on the imagery data. These results could serve as essential references for the on-going interpretation of the CE-3 radar data. The ability to validate our theoretical subsurface structure using CE-3 in-situ radar observations will improve the methods for quantifying lunar subsurface structure using crater morphologies and scaling. 展开更多
关键词 Chang'e-3 subsurface structure impact cratering Lunar Penetrating Radar lunar ex-ploration.
原文传递
The 2008 Nura Mw6.7 earthquake: A shallow rupture on the Main Pamir Thrust revealed by GPS and In SAR 被引量:4
6
作者 Qiao Xuejun Wang Qi +3 位作者 Yang Shaomin Li Jie Zou Rong Ding Kaihua 《Geodesy and Geodynamics》 2015年第2期91-100,共10页
The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR) measurements of its coseismic ground deformation that are available... The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR) measurements of its coseismic ground deformation that are available for a major earthquake in the region. Analysis of the InSAR data shows that the earthquake ruptured a secondary fault of the Main Pamir Thrust for about 20 kin. The fault plane striking N46~E and dipping 48~SE is dominated by thrust slip up to 3 m, most of which is confined to the uppermost 2-5 km of the crust, similar to the nearby 1974 MwT.0 Markansu earthquake. The elastic model of interseismic deformation constrained by GPS measurements suggests that the two earthquakes may have resulted from the failures of two high-angle reverse faults that are about 10 km apart and rooted in a locked dScollement at depths of 5-6 kin. The elastic strain is built up by a freely creeping decollement at about 16 mm/a. 展开更多
关键词 Shallow rupture Nura earthquake Main Pamir Thrust Global positioning system (GPS) Interferometric synthetic apertureradar (InSAR) Coseismic deformation Interseismic deformation Southern Tianshan
原文传递
Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology 被引量:3
7
作者 Binlong Ye Jun Huang +1 位作者 Joseph Michalski Long Xiao 《Journal of Earth Science》 SCIE CAS CSCD 2019年第5期1049-1058,共10页
Over 600 chloride-bearing deposits(chlorides) have been identified on the southern highlands of Mars. These chlorides have critical implications for hydrology and astrobiology: they are indicators of an evaporating su... Over 600 chloride-bearing deposits(chlorides) have been identified on the southern highlands of Mars. These chlorides have critical implications for hydrology and astrobiology: they are indicators of an evaporating super saturated solution, and they could have provided habitat environments for halophilic microorganisms and preserved organic matter. One of the prominent geomorphology characteristics of these chloridebearing regions is the polygonal features within them. The origin of these polygonal features is still in debate. In this study, we have surveyed 153 locations of chlorides using 441 high resolution imaging science experiment(Hi RISE) images to characterize the geomorphology of polygonal features. We identified 3 types of polygonal features of distinct geomorphologic characteristics: fractures, raised ridges, and transitional polygons between fractures and raised ridges. We evaluate previously proposed hypotheses of the formation of the polygonal features, and suggest that the 3 types of polygonal features are indicators of different stages of salt crust formation. Salt crust is usually formed through multiple groundwater activities, and it often occurs in playa environment on Earth. The unique hydrological and astrobiological implications of the chlorides with polygonal features make these deposits of high priority for future landed on and/or sample return exploration missions of Mars. 展开更多
关键词 chlorides polygonal feature PLAYA HYDROLOGY ASTROBIOLOGY MARS
原文传递
The inner solar system cratering record and the evolution of impactor populations 被引量:7
8
作者 Robert G.Strom Renu Malhotra +3 位作者 Zhi-Yong Xiao Takashi Ito Fumi Yoshida Lillian R Ostrach 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第3期407-434,共28页
We review previously published and newly obtained crater size-frequency distributions in the inner solar system. These data indicate that the Moon and the ter- restrial planets have been bombarded by two populations o... We review previously published and newly obtained crater size-frequency distributions in the inner solar system. These data indicate that the Moon and the ter- restrial planets have been bombarded by two populations of objects. Population 1, dominating at early times, had nearly the same size distribution as the present-day asteroid belt, and produced heavily cratered surfaces with a complex, multi-sloped crater size-frequency distribution. Population 2, dominating since about 3.8-3.7 Gyr, had the same size distribution as near-Earth objects (NEOs) and a much lower im- pact flux, and produced a crater size distribution characterized by a differential -3 single-slope power law in the crater diameter range 0.02 km to 100 km. Taken to- gether with the results from a large body of work on age-dating of lunar and meteorite samples and theoretical work in solar system dynamics, a plausible interpretation of these data is as follows. The NEO population is the source of Population 2 and it has been in near-steady state over the past ~ 3.7-3.8 Gyr; these objects are derived from the main asteroid belt by size-dependent non-gravitational effects that favor the ejection of smaller asteroids. However, Population 1 was composed of main belt as- teroids ejected from their source region in a size-independent manner, possibly by means of gravitational resonance sweeping during orbit migration of giant planets; this caused the so-called Late Heavy Bombardment (LHB). The LHB began some time before ~3.9 Gyr, peaked and declined rapidly over the next ~ 100 to 300 Myr, and possibly more slowly from about 3.8-3.7 Gyr to ~2 Gyr. A third crater population (Population S) consisted of secondary impact craters that can dominate the cratering record at small diameters. 展开更多
关键词 solar system: formation -- minor planets asteroids -- Earth -- Moon
在线阅读 下载PDF
Geological Characteristics and Model Ages of Marius Hills on the Moon 被引量:2
9
作者 黄俊 肖龙 +3 位作者 贺新星 乔乐 赵健楠 李卉 《Journal of Earth Science》 SCIE CAS CSCD 2011年第5期601-609,共9页
Marius Hills is a volcanic plateau on the nearside of the Moon. It is of great interest for its high concentration of volcanic features, including domes, cones, ridges, and rilles. However, the morphological and chron... Marius Hills is a volcanic plateau on the nearside of the Moon. It is of great interest for its high concentration of volcanic features, including domes, cones, ridges, and rilles. However, the morphological and chronological characteristics of this plateau were not well studied due to the low resolution of early mission data. This study describes the detailed morphology of the volcanic features using the latest high spatial resolution images of the Terrain Camera (TC) onboard Selene-1 (10 m/pix) and Narrow Angle Camera (NAC) onboard the Lunar Reconnaissance Orbiter (LRO) (0.5 m/pix). We report here some new structures such as skylights and remnants of lava tubes. We have divided spectrally homogenous areas with Clementine UVVIS data and did crater size frequency distribution (CSFD) measurements with Lunar Orbiter (LO) IV and TC images in every spectral unit. We first report absolute model ages of 1.10 Ga for Marius basalt 1, 1.49 Ga for Fiamsteed basalt, and 1.46 Ga for Schiaparelli Basalt. In addition, we have identified several younger lava events: they are Marius basalt 2 (814 Ma), medium to low titanium basalt (949 Ma), and undifferentiated medium titanium basalt (687 Ma). Finally, we propose a mantle plume scenario for the formation of Marius Hills, which could solve the inconsistency of previous models. 展开更多
关键词 the Moon Marius Hills absolute model age volcanic feature mantle plume.
原文传递
Ancient subsurface structure beneath crater Clavius:constraint by recent high-precision gravity and topography data 被引量:2
10
作者 Zhen Zhong Jian-Guo Yan J.Alexis P.Rodriguez 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第1期95-102,共8页
With the increasing precision of the GRAIL gravity field models and topography from LOLA, it is possible to investigate the substructure beneath crater Clavius. An admittance between gravity and topography data is com... With the increasing precision of the GRAIL gravity field models and topography from LOLA, it is possible to investigate the substructure beneath crater Clavius. An admittance between gravity and topography data is commonly used to estimate selenophysical parameters, including load ratio, crustal thickness and density, and elastic thickness. Not only a surface load, but also a subsurface load is considered in estimation. The algorithm of particle swarm optimization(PSO) with a swarm size of 400 is employed as well.Results indicate that the observed admittance is best-fitted by the modeled admittance based on a spherical shell model, which was proved to be unsatisfactory in the previous study. The best-fitted load ratio f is around-0.194. Such a small load ratio conforms to the direct proportion between the nearly uncompensated topography and its corresponding negative gravity anomaly. It also indicates that a surface load dominates all the loads. Constrained within 2σSTD, a small crustal thickness(~30 km) and a crustal density of ~2587 kg m-3are found, quite close to the results from previous GRAIL research. Considering the well constrained crustal thickness and density, the best-fitted elastic thickness(~7 km) is rational. This result is slightly smaller than the previous study(~12 km). Such difference can be attributed to the difference in crustal density used and the precision of gravity and topography data. Considering that the small difference between the modeled gravity anomaly and observations is quite small, a parameter inversed here could be an indicator of the subsurface structure beneath Clavius. 展开更多
关键词 MOON PLANETARY systems:planets and satellites:fundamental parameters PLANETARY SYSTEMS methods:data analysis
在线阅读 下载PDF
A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles(UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China 被引量:3
11
作者 Xiao Xiao Jiang Wang +1 位作者 Jun Huang Binlong Ye 《Earth and Planetary Physics》 2018年第5期398-405,共8页
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry ... Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan. 展开更多
关键词 unmanned aerial vehicle(UAV) structure from motion yardang aeolian research comparative planetary geology
在线阅读 下载PDF
Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil 被引量:3
12
作者 Chen Li Wenhui Ma +1 位作者 Yang Li Kuixian Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1241-1248,共8页
Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in sit... Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in situ.However,space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field,making the mi-crostructure of lunar soil differ from that of minerals on the Earth.In this study,scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples.The microstructural characteristics of the lunar soil may drastically change its metallurgical performance.The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites,the amorphous layer caused by solar wind injection,and radiation tracks modified by high-energy particle rays inside mineral crystals.The nanophase iron presents a wide distribution,which may have a great impact on the electromagnetic prop-erties of lunar soil.Hydrogen ions injected by solar wind may promote the hydrogen reduction process.The widely distributed amorph-ous layer and impact glass can promote the melting and diffusion process of lunar soil.Therefore,although high-energy events on the lun-ar surface transform the lunar soil,they also increase the chemical activity of the lunar soil.This is a property that earth samples and tradi-tional simulated lunar soil lack.The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil. 展开更多
关键词 space metallurgy Chang’e-5 lunar soil space weathering metallurgical performance
在线阅读 下载PDF
Selection and thermal physical characteristics analysis of in-situ condition preserved coring lunar rock simulant in extreme environment 被引量:6
13
作者 Haichun Hao Mingzhong Gao +5 位作者 Cunbao Li Xuan Wang Yan Wu Zheng Gao Wen Yu Xuemin Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1411-1424,共14页
With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volat... With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process. 展开更多
关键词 Lunar-based Lunar rock simulant Extreme environment Thermal physical properties
在线阅读 下载PDF
Estimation of the elastic thickness over ancient Mare Moscoviense 被引量:2
14
作者 Zhen Zhong Jian-Guo Yan +2 位作者 Teng Zhang Zhi-Yong Xiao Jose Alexis Palmero Rodriguez 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第12期318-326,共9页
The Moscoviense basin is an atypical lunar impact basin with concentric rings of positive and negative gravity anomalies.This basin can provide insights into the inhomogeneous thermal activities across the farside of ... The Moscoviense basin is an atypical lunar impact basin with concentric rings of positive and negative gravity anomalies.This basin can provide insights into the inhomogeneous thermal activities across the farside of the Moon.Based on an updated spherical harmonic thin elastic-shell loading model,we used localized admittance analyses to estimate the elastic thickness as well as other associated selenophysical parameters for the Moscoviense basin.The high precision gravity and topography data employed in our estimation were collected by the Gravity Recovery and Interior Laboratory and the Lunar Orbiter Laser Altimeter missions.Our results indicate that the crust-mantle interface is mainly compensated by the prefilling depth rather than the observed surface topography.The results constrained within two standard deviations yielded a small load ratio(~0.168),a best-fit crustal thickness of 36.2 km,and an optimized crustal density of 3159.5 kg m-3.Such large density approaches the density of olivine-rich mantle materials,implying that the excavation of the Mare Moscoviense occurred during a basin-forming impact.The inversed elastic thickness at Mare Moscoviense was around 18 km,lower than the previous results(~60 km)found over Mare basins on the lunar nearside.These results indicate that extreme thermal activity existed during the Moscoviense basin-forming period such as reheating mechanisms from a double-impact process and mare volcanism. 展开更多
关键词 Mare Moscoviense localized admittance thin elastic spherical shell elastic thickness
在线阅读 下载PDF
Petrogenesis of basaltic shergottite NWA 8656 被引量:2
15
作者 Ting Cao Qi He ZhuQing Xue 《Earth and Planetary Physics》 2018年第5期384-397,共14页
Most basaltic shergottites are too Mg-rich to represent parent melt compositions because they contain some cumulus pyroxenes. However, basaltic shergottite Northwest Africa(NWA) 8656 with subophitic texture can be use... Most basaltic shergottites are too Mg-rich to represent parent melt compositions because they contain some cumulus pyroxenes. However, basaltic shergottite Northwest Africa(NWA) 8656 with subophitic texture can be used as the parent melt composition in petrogenetic studies because it contains no or rare cumulus pyroxenes. Its pyroxene cores(Mg# 66-68, the most magnesian) are in equilibrium with the bulk rock composition based on major(Fe-Mg) and trace elements(REE—rare earth elements).The patchy zoning of pyroxenes has been interpreted as reflecting a two-stage crystallization history: 1) crystallization of Mg-rich pyroxene cores at depth(50 km, the base of Martian crust), 2) crystallization of Fe-rich pyroxene rims at the shallow depth near the Martian surface with a fast cooling history. The crystallization of Fe-rich pyroxenes and the existence of different symplectites indicate that NWA 8656 underwent eruption. The oxygen fugacity of NWA 8656(QFM –0.9±0.5) suggests an oxidized condition at the late-stage crystallization process, and the CI-normalized REE patterns of different minerals show enrichment in LREE, compared to that of depleted shergottites. Both of these observations suggest a relatively ITE(incompatible trace elements)-enriched signature of NWA 8656, similar to those of other enriched shergottites. The REE compositions of augite core and rim and plagioclase can be successfully reproduced by progressive crystallization without exogenous components, which indicates a closed magmatic system for NWA 8656. Consequently, we conclude that the ITE-enriched signature of NWA 8656 is inherited from an enriched mantle source rather than caused by crustal assimilation. Moreover, partial melting of depleted Martian mantle could not directly yield magmas that have geochemical characteristics similar to enriched shergottite parent magmas, so the enriched and depleted shergottites are derived from distinct mantle sources, and the mantle source of enriched shergottites would be expected to contain ilmenite. 展开更多
关键词 basaltic shergottites patchy zoning ITE-enriched closed-system distinct mantle sources
在线阅读 下载PDF
High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith 被引量:4
16
作者 Jing Yang Wei Du 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期90-97,共8页
Forty-five years after the Apollo and Luna missions, China’s Chang’e-5 (CE-5) mission collected ∼1.73 kg of new lunar materials from one ofthe youngest basalt units on the Moon. The CE-5 lunar samples provide oppor... Forty-five years after the Apollo and Luna missions, China’s Chang’e-5 (CE-5) mission collected ∼1.73 kg of new lunar materials from one ofthe youngest basalt units on the Moon. The CE-5 lunar samples provide opportunities to address some key scientific questions related to theMoon, including the discovery of high-pressure silica polymorphs (seifertite and stishovite) and a new lunar mineral, changesite-(Y). Seifertitewas found to be coexist with stishovite in a silica fragment from CE-5 lunar regolith. This is the first confirmed seifertite in returned lunarsamples. Seifertite has two space group symmetries (Pnc2 and Pbcn) and formed from an α-cristobalite-like phase during “cold” compressionduring a shock event. The aftershock heating process changes some seifertite to stishovite. Thus, this silica fragment records different stagesof an impact process, and the peak shock pressure is estimated to be ∼11 to 40 GPa, which is much lower than the pressure condition forcoexistence of seifertite and stishovite on the phase diagram. Changesite-(Y), with ideal formula (Ca_(8)Y)◻Fe^(2+)(PO_(4))_(7) (where ◻ denotes avacancy) is the first new lunar mineral to be discovered in CE-5 regolith samples. This newly identified phosphate mineral is in the form ofcolumnar crystals and was found in CE-5 basalt fragments. It contains high concentrations of Y and rare earth elements (REE), reaching upto ∼14 wt. % (Y,REE)2O3. The occurrence of changesite-(Y) marks the late-stage fractional crystallization processes of CE-5 basalts combinedwith silicate liquid immiscibility. These new findings demonstrate the significance of studies on high-pressure minerals in lunar materials andthe special nature of lunar magmatic evolution. 展开更多
关键词 evolution MINERALS BASALT
在线阅读 下载PDF
Evolution History of Mesas in the Southern Utopia Planitia and Implications for the Ancient Oceans on Mars 被引量:1
17
作者 Tengfei Zhang Le Wang +2 位作者 Arzigul Saidamat Long Xiao Jun Huang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期940-950,共11页
As one of the prominent landforms in the Zhurong landing region,mesas are geological features with flat tops and steep marginal cliffs.The mesas are widely distributed along the dichotomy boundary.There are various in... As one of the prominent landforms in the Zhurong landing region,mesas are geological features with flat tops and steep marginal cliffs.The mesas are widely distributed along the dichotomy boundary.There are various interpreted origins proposed for the mesas,such as the erosion of sedimentary layers,tuyas eruptions,or surface collapse due to the catastrophic release of groundwater.We investigate the detailed morphological characteristics of the mesas on the Late Hesperian Lowland unit within the Utopia Planitia.We observe morphological evidence for both the ice-bearing interior mesas and the sedimentary origin,including(1)small pits on the crater wall and mesa cliff formed by the release of volatiles like ice;(2)lobate flows at the base of mesas formed by the melting of subsurface ice;(3)layered mesas indicating sedimentary origin;(4)grooves on the top surface of mesas formed by the volumetric compaction of sedimentary deposits.The results indicate that the mesas in the study area are formed by the erosion of sedimentary layers and representative of the Noachian oceanic sediments.We propose an evolutionary model for the mesas.This study will provide some insights into future research of ancient ocean hypothesis of Mars and interesting targets for the exploration of the Zhurong rover. 展开更多
关键词 mesas ancient oceans Tianwen-1 Utopia Planitia MARS planetary surface analysis
原文传递
Non-Impact Origin of the Baisha Structure in Hainan Province, China 被引量:1
18
作者 Jiang Pu Zhiyong Xiao +1 位作者 Long Xiao Cheng Huang 《Journal of Earth Science》 SCIE CAS CSCD 2020年第2期385-392,共8页
The Baisha Structure,with a rim-to-rim diameter of^3.7 km,in the center of the Hainan Province,southern China has been considered to be an impact crater.Field investigation and petrological study are presented in this... The Baisha Structure,with a rim-to-rim diameter of^3.7 km,in the center of the Hainan Province,southern China has been considered to be an impact crater.Field investigation and petrological study are presented in this paper to investigate the impact hypothesis for this structure.The^600-m-thick Lower Cretaceous feldspathic quartz sandstones from the Lumuwan Formation are the major outcrops both within and outside of the structure.The amphitheater-shaped rim of the structure is composed of granite porphyries that are intruded in the Lumuwan Formation.Previously interpreted impact breccia and impact melt rocks are actually granite porphyries different cooling rates and weathering status.Rocks from locations that most likely have recorded shock metamorphic signatures are sampled,but petrographic analyses reveal no indications of shock metamorphism.While subtle structural deformation occurs at the contact boundary between the granite porphyries and the feldspathic quartz sandstones,the feldspathic quartz sandstones exhibit uniformed dipping strata across the crater floor and walls.All the evidence suggests that the Baisha Structure was not formed by impact cratering.It most likely has been shaped by a combination of magmatic intrusion and long-term differential erosion. 展开更多
关键词 IMPACT CRATER shock METAMORPHISM DIFFERENTIAL EROSION
原文传递
Thorium anomaly on the lunar surface and its indicative meaning 被引量:1
19
作者 Jingyi Zhang Jianzhong Liu 《Acta Geochimica》 EI CAS CSCD 2024年第3期507-519,共13页
The Moon has been divided into three terranes:Procellarum KREEP Terrane(PKT),Feldspathic Highland Terrane(FHT),and South Pole-Aitken Terrane(SPAT),using globally measured Th and FeO.Many lunar evolu-tion models have p... The Moon has been divided into three terranes:Procellarum KREEP Terrane(PKT),Feldspathic Highland Terrane(FHT),and South Pole-Aitken Terrane(SPAT),using globally measured Th and FeO.Many lunar evolu-tion models have predicted that a lunar magma ocean will produce a residual layer enriched in incompatible elements such as K,REE,and P(i.e.,KREEP)in the late age of crys-tallization;and that the distribution of thorium can be used as a proxy for determining the global distribution of KREEP.The thorium distribution in these three terranes is inhomo-geneous.The highest concentration of thorium is in PKT,the medium concentration of thorium is in SPAT,and almost none in FHT.Then what is the specific distribution in each of the terrane and what enlightenment can it tell us?Here we present and describe the detailed thorium distribution in PKT,SPAT,and FHT and provide some information for the origin of asymmetries on the lunar surface. 展开更多
关键词 Procellarum KREEP Terrane(PKT) Feldspathic Highland Terrane(FHT) South Pole-Aitken Terrane(SPAT) KREEP Thorium abundance
在线阅读 下载PDF
Theoretical calculation of equilibrium Mg isotope fractionation between silicate melt and its vapor 被引量:2
20
作者 Haiyang Luo Huiming Bao +1 位作者 Yuhong Yang Yun Liu 《Acta Geochimica》 EI CAS CSCD 2018年第5期655-662,共8页
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium-aluminum-rich inclu- s... Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium-aluminum-rich inclu- sions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can con- strain the melt's isotopic compositions. However, equilib- rium a is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt-vapor systems based on first-principles molecular dynamics and the high- temperature approximation of the Bigeleisen-Mayer equation. We found that, at 2500 K, 625Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141 ±0.004 and 0.143 ±0.003‰ more positive than in their respective vapors. The corresponding 626Mg values were 0.270 ± 0.008 and 0.274 ± 0.006‰ more positive than in vapors, respectively. The general α - T equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt-vapor systems were: αMg(l)-Mg(g) = 1 + 5.264×10^5/T^2 (1/m - 1/m') and αmg(l)-Mg(g) = 1 + 5.340×10^5/T^2 (1/m - 1/m'), respectively, Where m is the mass of light isotope, ^25Mg or ^26Mg. These results offer a necessary parameter for mechanistic under- standing of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution. 展开更多
关键词 Equilibrium Mg isotope fractionation Forceconstant Structural optimization RPFR
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部