Using the Lie Symmetry under infinitesimal transformations in which the time is not variable, the nonNoether conserved quantity of nonholonomic system having variable mass and unilateral constraints is studied. The di...Using the Lie Symmetry under infinitesimal transformations in which the time is not variable, the nonNoether conserved quantity of nonholonomic system having variable mass and unilateral constraints is studied. The differential equations of motion of the system are given. The determining equations of Lie symmetrical transformations of the system under infinitesimal transformations are constructed. The Hojman's conservation theorem of the system is established. Finally, we give an example to illustrate the application of the result.展开更多
A newly transparent approach for determining energy eigenvalues is proposed, which is finding the ‘eigen-operator' of the square of the Schroedinger operator. As three examples, we discuss the energy level of a n...A newly transparent approach for determining energy eigenvalues is proposed, which is finding the ‘eigen-operator' of the square of the Schroedinger operator. As three examples, we discuss the energy level of a nondegenerate parametric amplifier, an angular momentum system and a ring shape of coupled oscillators.展开更多
文摘Using the Lie Symmetry under infinitesimal transformations in which the time is not variable, the nonNoether conserved quantity of nonholonomic system having variable mass and unilateral constraints is studied. The differential equations of motion of the system are given. The determining equations of Lie symmetrical transformations of the system under infinitesimal transformations are constructed. The Hojman's conservation theorem of the system is established. Finally, we give an example to illustrate the application of the result.
文摘A newly transparent approach for determining energy eigenvalues is proposed, which is finding the ‘eigen-operator' of the square of the Schroedinger operator. As three examples, we discuss the energy level of a nondegenerate parametric amplifier, an angular momentum system and a ring shape of coupled oscillators.