Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely s...Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.展开更多
Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicall...Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.展开更多
The 2024 MRE HP Special Volume selects papers on new theoretical and experimental developments in the use of static largevolume presses(LVPs)1–3 and dynamic compression4,5 for studies under extreme high-pressure and ...The 2024 MRE HP Special Volume selects papers on new theoretical and experimental developments in the use of static largevolume presses(LVPs)1–3 and dynamic compression4,5 for studies under extreme high-pressure and high-temperature(HPHT)conditions.It also continues the previous year’s6 contemporary focus on superhydrides7–11 with extremely high superconducting temperatures Tc and addresses some controversial issues.12–14 In addition,it explores unconventional pressure-induced chemistry,particularly novel chemical stoichiometry and its impact on geochemistry and cosmochemistry in the deep interiors of Earth and other planets.18–21.展开更多
The 19th century saw significant advancements in thermodynamics and the kinetic theory of gases,with J.C.Maxwell and L.E.Boltzmann playing key roles in the development of statistical physics through their work on the ...The 19th century saw significant advancements in thermodynamics and the kinetic theory of gases,with J.C.Maxwell and L.E.Boltzmann playing key roles in the development of statistical physics through their work on the distribution of single-particle states.At the beginning of the 20th century,J.W.Gibbs established modern equilibrium statistical physics based on the statistical distribution of system microstates and the concept of ensembles.Subsequently,statistical physics expanded into the quantum and nonequilibrium domains.展开更多
The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence...The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-...We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.展开更多
The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytro...The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.展开更多
Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar...Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.展开更多
Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of s...Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomi'al (NP)-complete combinatorial opti- mization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.展开更多
Experimental and theoretical researches performed by the author (period: 1969-present) showed that magnetic spinor particles (magnetic charges) are real structural components of atoms and substance and immediate sourc...Experimental and theoretical researches performed by the author (period: 1969-present) showed that magnetic spinor particles (magnetic charges) are real structural components of atoms and substance and immediate sources of all magnetic fields and magnetic manifestations in Nature. Magnetic charges, that constitute together with electrical charges atomic shells got of title: magnetons and antimagnetons (respectively with charges g−and g+ under fundamental condition: g = e). Furthermore, in addition to participating in structures of atomic shells, the magnetic charges exist in potential and even in real zones conduction of solids. The magnetic and electric spinor particles in atoms and substance exist in form such of the spinor associations as the magnetic and electric bispinors. Under influence of external magnetic field in conductor being implemented polarization of magnetic bispinors with formation of magnetic dipoles. Internal fields magnetic dipoles is directed against an external magnetic field and is a simple explanation of such a physical manifestation as diamagnetism. During the rotation of these dipoles in the conductor are formed of the vortex magnetic dipole fields, which and create an electromotive force, i.e. are responsible for the electromagnetic induction. Author proposed new magneto-electric technology called the magnetoelectric induction, as the result of which the permanent current of magnetic charges is created. However, such currents may be implemented solely in the superconductors. In the article presented the main reasons which more hundred year old hinder recognition and technical use of the real magnetic charges and their currents what considerably slow down the global scientific and technological progress.展开更多
Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the...Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed.In particular,the focus is put on recent developments of attosecond dynamics of charge,exciton,and magnetism.New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted.Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed.These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers,laser medical engineering,and ultrafast electronic devices.展开更多
The magnetic spinor particles (magnetic charges) are the real structural components all varieties of the Mass, for example, atoms, nucleons, positrons and neutrinos. Atomic-shaped device of Mass is the natural and the...The magnetic spinor particles (magnetic charges) are the real structural components all varieties of the Mass, for example, atoms, nucleons, positrons and neutrinos. Atomic-shaped device of Mass is the natural and the only possible organization of electric and magnetic charges which can create a gravitational field. At level of a popular language one can define nucleons as “small atoms”, and positron and neutrino as “very small atoms”. The electric and magnetic fundamental particles in neutron and proton shells which by tradition should be called quarks have charges of smaller magnitude than the charges of particles in atomic shells. Positron which participates in the gravitational interaction and, consequently, has an atomic-shaped device is the most likely candidate for the role of the proton nucleus. The most likely candidate particles on the participation in nuclei of proton and neutron as well as in nuclei of the positron and neutrino are presented in the article. So-called abnormal magnetic moment of neutron is formed by the quark magnetic dipoles which are like to unpaired electrons in the so-called magnetic atoms rotate on the outer orbitals of the neutron shell. The participation of the “magnetic electron” (magneton) in the neutrino core assumes the existence of the so-called anomalous magnetic moment and in the neutrino shell. The existence of real magnetic charges in the structures of the Mass draws our attention on such important problem as interaction between charges in the framework of electromagnetic dipoles such as and in which manifest the weak attraction. Weak interaction by its nature is electromagnetic. So-called electromagnetic interaction, manifested in pairs of homogeneous charges of opposite signs, is either electric or magnetic, but not electromagnetic. The explanation of the weak interaction in the marked pairs of charges is based on the author’s concept of the World Physical Triad and “Dark Energy”. Forces responsible for the interaction of the charges composing the electromagnetic dipoles correspond, conditionally of the weak charges of the particles which what assume mutual suppression of the influence of their fields on the Energo-medium and the formation of the weak “Dark energy”. Complex of magnetic particles, the quark magnetic dipoles and magneton by means of which the interconversion of a proton and a neutron is realized and maintained their constant number in the atomic nuclei can be called as magnetic meson. Namely, a processes of interconversion between a neutron and a proton which, as a rule, are not accompanied by secretions, created the illusion of neutron stability in atomic nuclei. The energy created by an exchange of magnetic mesons between neutron and proton can be a component of nuclear forces (strong interaction). Another effective and, most likely, the main component in the composition of the nuclear forces is the gravitational “Dark Energy”. Physics and structure of neutrinos presented in the paper suggest that the nature of these particles closer to the ideology of E. Majorana than P. Dirac’s.展开更多
Experiments executed by author of the present article (period 1968-1992) showed that the magnetic spinorial particles (magnetic charges) are real structural components of atoms and substance and are immediate sources ...Experiments executed by author of the present article (period 1968-1992) showed that the magnetic spinorial particles (magnetic charges) are real structural components of atoms and substance and are immediate sources of all magnetic fields in Nature. Joint orbital currents of electric and magnetic charges within atomic shells are the natural sources of gravitational field which is a vortical electromagnetic field. The vector nature of the gravitational field, in essence, is analogous to the vortical magnetic field that allows entering in the physical representations of such States of the gravitational field as paragravitation and ferrogravitation. Physical masses (atoms, substance, etc.), which emit ferrogravitational field, are repelled by sources paragravitational field, for example, from Earth. It is a manifestation of the effect of levitation, which was discovered by the author of this article. The forces of the technical levitation, which are formed by technical ferrogravitational fields, can be used in transport, lifting and space technology, energy and many other areas of human activity. The main reason that the real magnetic charges were “buried alive” in modern theoretical physics is the conditions of their confinement in the structures of atoms and substance, which is radically different from the confinement of electrons. Very negative role is played here by erroneous electromagnetic concept Maxwell, in which the magnetic field was officially deprived of their own source: magnetic pole or magnetic charge.展开更多
Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivia...Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field.展开更多
Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck...Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck's scale for example), we calculate the spectrum of energy densities of total relic gravitational waves from de Sitter inflation to the matter dominated universe. Our results show that the spectrum acquires corrections due to the consideration of trans-Planckian physics and these corrections depend sensitively on the vacuum state that was actually realized at the beginning of the inflation.展开更多
We calculate the new physics contributions to the neutral Bd^o and Ba^o meson mass splitting △Md and △Ma induced by the box diagrams involving the charged-Higgs bosons in the top quark two-Higgs doublet model (T2HD...We calculate the new physics contributions to the neutral Bd^o and Ba^o meson mass splitting △Md and △Ma induced by the box diagrams involving the charged-Higgs bosons in the top quark two-Higgs doublet model (T2HDM). Using the precision data, we obtain the bounds on the parameter space of the T2HDM: (a) For fixed MH = 400 GeV and 5= [0°, 60°], the upper bound on tan β is tan β≤ 30 after the inclusion of major theoretical uncertainties; (b) For the case of tan β≤ 20, a light charged Higgs boson with a mass around 300 GeV is allowed; and (c) The bounds on tan β and MH are strongly correlated: a smaller (larger) tan β means a lighter (heavier) charged Higgs boson.展开更多
The present issue of Earth and Planetary Physics is dedicated to the near-space neutral and plasma environments of Mars.The issue includes nine papers that present new results on the properties of the Martian exospher...The present issue of Earth and Planetary Physics is dedicated to the near-space neutral and plasma environments of Mars.The issue includes nine papers that present new results on the properties of the Martian exosphere,ionosphere,and magnetosphere,from both observational and modeling points of view.Due to the similarity between the two objects,the issue also includes two additional papers on the near-Venus plasma environment.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
基金National Natural Science Foundation of China(Nos.12435010)National Key R&D Program of China(No.2022YFA1602301)。
文摘Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA1408400 and 2021YFA1400401)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 52271238)+2 种基金the China Postdoctoral Science Foundation(Grant No.2025M770186)the Center for Materials Genome,and the Synergetic Extreme Condition User Facility(SECUF)supported by the AI-driven experiments,simulations and model training on the robotic AI-Scientist platform from Chinese Academy of Sciences and the Research Funds for the Central Universities(Grant No.N25ZLE007).
文摘Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.
基金financial support from the Shanghai Key Laboratory of MFree,China(Grant No.22dz2260800)the Shanghai Science and Technology Committee,China(Grant No.22JC1410300).
文摘The 2024 MRE HP Special Volume selects papers on new theoretical and experimental developments in the use of static largevolume presses(LVPs)1–3 and dynamic compression4,5 for studies under extreme high-pressure and high-temperature(HPHT)conditions.It also continues the previous year’s6 contemporary focus on superhydrides7–11 with extremely high superconducting temperatures Tc and addresses some controversial issues.12–14 In addition,it explores unconventional pressure-induced chemistry,particularly novel chemical stoichiometry and its impact on geochemistry and cosmochemistry in the deep interiors of Earth and other planets.18–21.
基金supported by the National Natural Science Foundation of China(Grant Nos.12135003,12122402,and 12475033)the National Key R&D Program of China(Grant No.2023YFE0109000)the Fundamental Research Funds for the Central Universities。
文摘The 19th century saw significant advancements in thermodynamics and the kinetic theory of gases,with J.C.Maxwell and L.E.Boltzmann playing key roles in the development of statistical physics through their work on the distribution of single-particle states.At the beginning of the 20th century,J.W.Gibbs established modern equilibrium statistical physics based on the statistical distribution of system microstates and the concept of ensembles.Subsequently,statistical physics expanded into the quantum and nonequilibrium domains.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325027,12274448,T2350007,12404239,12174041,12325405,12090054,and T2221001)the National Key R&D Program of China (Grant No.2022YFF0503504)。
文摘The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported in part by the National Key R&D Program of China (Contract Nos.2023YFA1606500,2024YFE0109800,and 2024YFE0110400)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34010000)+5 种基金the Gansu Key Project of Science and Technology (Grant No.23ZDGA014)the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2021B0301030006)the National Natural Science Foundation of China (Grant Nos.12105328,W2412040,12475126,12422507,12035011,12375118,12435008,and W2412043)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.2020409 and 2023439)the Russian Science Foundation (Grant No.25-42-00003)。
文摘We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.
基金the National Natural Science Foundation of China(No.52373311)the Innovation Program for Quantum Science and Technology(No.2021ZD0301605)+3 种基金provided by the National Natural Science Foundation of China(Nos.92263202 and 12374020)the National Key Research and Development Program of China(No.2020YFA0711502)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB33000000)support from the Australian Research Council(ARC Discovery Project,No.DP180102976).
文摘The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.
基金funding support from General Research Fund[Project No.14300525]from the Research Grants Council(RGC)of Hong Kong SAR,Chinafunding support from Natural Science Foundation of China(NSFC)Young Scientists Fund(Project No.22305203)+2 种基金NSFC Projects Nos.22309123,22422303,22303011,22033002,92261112 and U21A20328support from the Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM)at City University of Hong Kongsupport from Young Collaborative Research Grant[Project No.C1003-23Y]support from RGC of Hong Kong SAR,China.
文摘Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.
基金supported by the National Basic Research Program of China (Grant No. 2013CB932804)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-EW-J02)the National Natural Science Foundation of China (Grant Nos. 11121403 and 11225526)
文摘Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomi'al (NP)-complete combinatorial opti- mization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.
文摘Experimental and theoretical researches performed by the author (period: 1969-present) showed that magnetic spinor particles (magnetic charges) are real structural components of atoms and substance and immediate sources of all magnetic fields and magnetic manifestations in Nature. Magnetic charges, that constitute together with electrical charges atomic shells got of title: magnetons and antimagnetons (respectively with charges g−and g+ under fundamental condition: g = e). Furthermore, in addition to participating in structures of atomic shells, the magnetic charges exist in potential and even in real zones conduction of solids. The magnetic and electric spinor particles in atoms and substance exist in form such of the spinor associations as the magnetic and electric bispinors. Under influence of external magnetic field in conductor being implemented polarization of magnetic bispinors with formation of magnetic dipoles. Internal fields magnetic dipoles is directed against an external magnetic field and is a simple explanation of such a physical manifestation as diamagnetism. During the rotation of these dipoles in the conductor are formed of the vortex magnetic dipole fields, which and create an electromotive force, i.e. are responsible for the electromagnetic induction. Author proposed new magneto-electric technology called the magnetoelectric induction, as the result of which the permanent current of magnetic charges is created. However, such currents may be implemented solely in the superconductors. In the article presented the main reasons which more hundred year old hinder recognition and technical use of the real magnetic charges and their currents what considerably slow down the global scientific and technological progress.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400200)the National Natural Science Foundation of China(Grant Nos.12025407,92250303,and 11934003)+3 种基金Chinese Academy of Sciences(Grant Nos.YSBR047 and XDB330301)financial support from the National Science Fund for Distinguished Young Scholars(Grant No.12304096)China Postdoctoral Science Foundation(Grant No.2022TQ0362)Special Research Assistant of Chinese Academy of Sciences Foundation。
文摘Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed.In particular,the focus is put on recent developments of attosecond dynamics of charge,exciton,and magnetism.New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted.Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed.These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers,laser medical engineering,and ultrafast electronic devices.
文摘The magnetic spinor particles (magnetic charges) are the real structural components all varieties of the Mass, for example, atoms, nucleons, positrons and neutrinos. Atomic-shaped device of Mass is the natural and the only possible organization of electric and magnetic charges which can create a gravitational field. At level of a popular language one can define nucleons as “small atoms”, and positron and neutrino as “very small atoms”. The electric and magnetic fundamental particles in neutron and proton shells which by tradition should be called quarks have charges of smaller magnitude than the charges of particles in atomic shells. Positron which participates in the gravitational interaction and, consequently, has an atomic-shaped device is the most likely candidate for the role of the proton nucleus. The most likely candidate particles on the participation in nuclei of proton and neutron as well as in nuclei of the positron and neutrino are presented in the article. So-called abnormal magnetic moment of neutron is formed by the quark magnetic dipoles which are like to unpaired electrons in the so-called magnetic atoms rotate on the outer orbitals of the neutron shell. The participation of the “magnetic electron” (magneton) in the neutrino core assumes the existence of the so-called anomalous magnetic moment and in the neutrino shell. The existence of real magnetic charges in the structures of the Mass draws our attention on such important problem as interaction between charges in the framework of electromagnetic dipoles such as and in which manifest the weak attraction. Weak interaction by its nature is electromagnetic. So-called electromagnetic interaction, manifested in pairs of homogeneous charges of opposite signs, is either electric or magnetic, but not electromagnetic. The explanation of the weak interaction in the marked pairs of charges is based on the author’s concept of the World Physical Triad and “Dark Energy”. Forces responsible for the interaction of the charges composing the electromagnetic dipoles correspond, conditionally of the weak charges of the particles which what assume mutual suppression of the influence of their fields on the Energo-medium and the formation of the weak “Dark energy”. Complex of magnetic particles, the quark magnetic dipoles and magneton by means of which the interconversion of a proton and a neutron is realized and maintained their constant number in the atomic nuclei can be called as magnetic meson. Namely, a processes of interconversion between a neutron and a proton which, as a rule, are not accompanied by secretions, created the illusion of neutron stability in atomic nuclei. The energy created by an exchange of magnetic mesons between neutron and proton can be a component of nuclear forces (strong interaction). Another effective and, most likely, the main component in the composition of the nuclear forces is the gravitational “Dark Energy”. Physics and structure of neutrinos presented in the paper suggest that the nature of these particles closer to the ideology of E. Majorana than P. Dirac’s.
文摘Experiments executed by author of the present article (period 1968-1992) showed that the magnetic spinorial particles (magnetic charges) are real structural components of atoms and substance and are immediate sources of all magnetic fields in Nature. Joint orbital currents of electric and magnetic charges within atomic shells are the natural sources of gravitational field which is a vortical electromagnetic field. The vector nature of the gravitational field, in essence, is analogous to the vortical magnetic field that allows entering in the physical representations of such States of the gravitational field as paragravitation and ferrogravitation. Physical masses (atoms, substance, etc.), which emit ferrogravitational field, are repelled by sources paragravitational field, for example, from Earth. It is a manifestation of the effect of levitation, which was discovered by the author of this article. The forces of the technical levitation, which are formed by technical ferrogravitational fields, can be used in transport, lifting and space technology, energy and many other areas of human activity. The main reason that the real magnetic charges were “buried alive” in modern theoretical physics is the conditions of their confinement in the structures of atoms and substance, which is radically different from the confinement of electrons. Very negative role is played here by erroneous electromagnetic concept Maxwell, in which the magnetic field was officially deprived of their own source: magnetic pole or magnetic charge.
基金supported by the National Natural Science Foundation of China(Grant Nos.62022089,12174439,11874405,52272135,62274010,61971035)the National Key Research and Development Program of China(Grant Nos.2019YFA0308000,2021YFA1401300,2021YFA1401800,2018YFA0704200,2021YFA1400100,2020YFA0308800)+2 种基金Chongqing Outstanding Youth Fund(Grant No.2021ZX0400005)Beijing Institute of Technology Science and Technology Innovation Program Innovative Talent Science and Technology Funding SpecialProgram(No.2022CX01022)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB33000000)。
文摘Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field.
基金Supported by the National Natural Science Foundation of China under Grant No 10375023, the Program for NCET (No 04-0784), and the Key Project of the Ministry of Education of China (No 205110).
文摘Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck's scale for example), we calculate the spectrum of energy densities of total relic gravitational waves from de Sitter inflation to the matter dominated universe. Our results show that the spectrum acquires corrections due to the consideration of trans-Planckian physics and these corrections depend sensitively on the vacuum state that was actually realized at the beginning of the inflation.
基金The project partly supported by National Natural Science Foundation of China under Grant No. 10575052 and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20050319008.Acknowledgments 0ne of the authors Lin-Xia Lü would like to thank Prof. C.S. Huang for his valuable help.
文摘We calculate the new physics contributions to the neutral Bd^o and Ba^o meson mass splitting △Md and △Ma induced by the box diagrams involving the charged-Higgs bosons in the top quark two-Higgs doublet model (T2HDM). Using the precision data, we obtain the bounds on the parameter space of the T2HDM: (a) For fixed MH = 400 GeV and 5= [0°, 60°], the upper bound on tan β is tan β≤ 30 after the inclusion of major theoretical uncertainties; (b) For the case of tan β≤ 20, a light charged Higgs boson with a mass around 300 GeV is allowed; and (c) The bounds on tan β and MH are strongly correlated: a smaller (larger) tan β means a lighter (heavier) charged Higgs boson.
文摘The present issue of Earth and Planetary Physics is dedicated to the near-space neutral and plasma environments of Mars.The issue includes nine papers that present new results on the properties of the Martian exosphere,ionosphere,and magnetosphere,from both observational and modeling points of view.Due to the similarity between the two objects,the issue also includes two additional papers on the near-Venus plasma environment.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.