期刊文献+
共找到95,160篇文章
< 1 2 250 >
每页显示 20 50 100
High-Precision Physics Experiments at Huizhou Large-Scale Scientific Facilities
1
作者 Fengpeng An Dong Bai +40 位作者 Hanjie Cai Siyuan Chen Xurong Chen Hongyue Duyang Leyun Gao Shaofeng Ge Jun He Junting Huang Zhongkui Huang Igor Ivanov Chen Ji Huan Jia Junjie Jiang Xiaolin Kang Soo-Bong Kim Chuifan Kong Wei Kou Qiang Li Qite Li Jiajun Liao Jiajie Ling Cheng-En Liu Xinwen Ma Hao Qiu Jian Tang Rong Wang Weiqiang Wen Jiajun Wu Jun Xiao Xiang Xiao Yu Xu Weihua Yang Xiaofei Yang Jiangming Yao Ye Yuan Mushtaq Zaiba Pengming Zhang Shaofeng Zhang Shuo Zhang Shihan Zhao Liping Zou 《Chinese Physics Letters》 2025年第11期29-48,共20页
In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Rese... In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility(CNUF), we are assembling a consortium of experts in relevant disciplines, both domestically and internationally,to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF.Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures;muon physics;neutrino physics;neutron physics;the testing of fundamental symmetries;and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators.We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China's nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research. 展开更多
关键词 neutron physics hadron physics fundamental symmetries neutrino physics quantum effects domains inqui advanced nuclear physics research facility cnuf high precision physics
原文传递
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
2
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Stability Frontiers and Mixed-Dimensional Physics in the Kagome Intermetallics Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)
3
作者 Zhongchen Xu Wenbo Ma +5 位作者 Shijun Guo Ziyi Zhan Quansheng Wu Xianmin Zhang Xiuliang Yuan Youguo Shi 《Chinese Physics Letters》 2025年第10期194-211,共18页
Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicall... Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems. 展开更多
关键词 strongly correlated interactionsleading mixed dimensional physics ln scbi low dimensional physics chemicallyversatile kagome platform assessing their stability frontiers withi stability frontiers enhancedquantum effects
原文传递
Exploring Kitaev Physics in Honeycomb Magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb):Insights from First-Principles Calculations
4
作者 Shi-Bo Zhao Jia-WanLi Yusheng Hou 《Chinese Physics Letters》 2025年第10期263-289,共27页
Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,... Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets. 展开更多
关键词 honeycomb latticesare kitaev interactiona honeycomb magnets magnetic properties Kitaev physics Ni XO quantum spin liquid stateshoweverrealizing first principles calculations
原文传递
Chrono-Diversity in Educational Onset:Lessons from Nobel Physics Laureates’University Entrance Ages for Inclusive STEM Education
5
作者 Hongwei Zhu Wei Liu Qingfan Shi 《Journal of Contemporary Educational Research》 2025年第8期359-366,共8页
Traditional educational paradigms prioritize age-based progression and early specialization as key indicators of academic potential,especially in STEM.This study challenges this norm by analyzing university entrance a... Traditional educational paradigms prioritize age-based progression and early specialization as key indicators of academic potential,especially in STEM.This study challenges this norm by analyzing university entrance ages of 226 Nobel Physics Laureates(1901-2024).Results reveal a right-skewed distribution(Median=18;Mean=18.8;SD=2.4)with substantial variance(14-25 years),including outliers like Lev Landau(14)and Arthur Ashkin(24).Notably,figures such as Guglielmo Marconi achieved breakthroughs without formal university entry,relying on self-directed learning.Using survival analysis and multinomial regression,we find“non-traditional”timelines,accelerated,delayed,or non-formal pathways,correlate with distinct creative advantages.This suggests current“timeliness”metrics poorly predict transformative scientific achievement.We propose an“Optimal Chrono-Diversity”framework advocating flexible entry systems,enhanced adult learner support,and recognition of autodidactic potential to inform educational policy and cultivate innovative STEM talent. 展开更多
关键词 Nobel physics laureates Entrance age STEM education Non-traditional pathways Creativity Educational policy Talent development
在线阅读 下载PDF
Exploring Boundary Layer Physics and Atmospheric Chemistry in Megacities:Insights from the Beijing 325 m Meteorological Tower
6
作者 Yele SUN Zifa WANG +8 位作者 Linlin WANG Xueling CHENG Weiqi XU Yu SHI Wei ZHOU Yan LI Fei HU Zhiqiu GAO Zhongxiang HONG 《Advances in Atmospheric Sciences》 2025年第4期713-730,共18页
The Beijing 325 m meteorological tower stands as a pivotal research platform for exploring atmospheric boundary layer physics and atmospheric chemistry.With a legacy spanning 45 years,the tower has played a crucial ro... The Beijing 325 m meteorological tower stands as a pivotal research platform for exploring atmospheric boundary layer physics and atmospheric chemistry.With a legacy spanning 45 years,the tower has played a crucial role in unraveling the complexities of urban air pollution,atmospheric processes,and climate change in Beijing,China.This review paper provides a comprehensive overview of the measurements on the tower over the past two decades.Through long-term comprehensive observations,researchers have elucidated the intricate relationships between anthropogenic emissions,meteorological dynamics,and atmospheric composition,shedding light on the drivers of air pollution and its impacts on public health.The vertical measurements on the tower also enable detailed investigations into boundary layer dynamics,turbulent mixing,and pollutant dispersion,providing invaluable data for validating chemical transport models.Key findings from the tower’s research include the identification of positive feedback mechanisms between aerosols and the boundary layer,the characterization of pollutant sources and transport pathways,the determination of fluxes of gaseous and particulate species,and the assessment of the effectiveness of pollution control measures.Additionally,isotopic measurements have provided new insights into the sources and formation processes of particulate matter and reactive nitrogen species.Finally,the paper outlines future directions for tower-based research,emphasizing the need for long-term comprehensive measurements,the development of innovative tower platforms,and integration of emerging technologies. 展开更多
关键词 meteorological tower boundary layer physics aerosol composition vertical distributions formation mechanisms aerosol-boundary interactions
在线阅读 下载PDF
Bridging nuclear physics across energy scales:from neutrinoless double-beta decay to high-energy heavy-ion collisions
7
作者 Jiangyong Jia 《Nuclear Science and Techniques》 2025年第11期1-3,共3页
The challenge in searching for fundamental symmetry violation.Neutrinoless double-beta(0νββ)decay represents one of the most profound tests of fundamental symmetries in nature.This hypothetical nuclear process,in w... The challenge in searching for fundamental symmetry violation.Neutrinoless double-beta(0νββ)decay represents one of the most profound tests of fundamental symmetries in nature.This hypothetical nuclear process,in which two neutrons simultaneously decay into two protons with the emission of two electrons but no neutrinos,would demonstrate that lepton number is not conserved and confirm that neutrinos are their own antiparticles(Majorana particles).The observation of 0νββdecay would provide crucial insights into the absolute neutrino mass scale and could illuminate the origin of matter-antimatter asymmetry in the universe. 展开更多
关键词 fundamental symmetries neutrinoless double beta decay observation decay decay two protons lepton number nuclear physics majorana particles tests fundamental symmetries
在线阅读 下载PDF
The Surprising Physics of Interfaces in Active Matter
8
作者 Alexandre Solon Yongfeng Zhao 《Chinese Physics Letters》 2025年第10期319-322,共4页
Active matter encompasses all systems in which each individual constituent independently dissipates energy in its environment.This definition brings together biological systems such as cellular tissues,bacterial colon... Active matter encompasses all systems in which each individual constituent independently dissipates energy in its environment.This definition brings together biological systems such as cellular tissues,bacterial colonies,cytoskeletal filaments driven by molecular motors and animal groups,as well as collections of inert self-propelled particles such as Janus particles,[1]colloidal rollers[2]or vibrated grains.[3]Because of the local persistent drive,these systems are far from thermal equilibrium and cannot be described in terms of thermodynamic potentials.This leads to surprising physics that defies some of the basic intuitions that we have from passive systems,including longrange order in two dimensions[4]and phase-separation in absence of attractive interactions. 展开更多
关键词 PHYSICS active matter INTERFACES vibrated grains biological systems molecular motors janus particles colloidal rollers
原文传递
2024 HP special volume:Advances in high-pressure technology,novel physics and chemistry,and applications to earth and planetary sciences
9
作者 Ho-Kwang Mao Huiyang Gou +8 位作者 Qingyang Hu Michel Koenig Gang Liu Jin Liu Lin Wang Hong Xiao Wenge Yang Qiaoshi Zeng Wenjun Zhu 《Matter and Radiation at Extremes》 2025年第6期1-3,共3页
The 2024 MRE HP Special Volume selects papers on new theoretical and experimental developments in the use of static largevolume presses(LVPs)1–3 and dynamic compression4,5 for studies under extreme high-pressure and ... The 2024 MRE HP Special Volume selects papers on new theoretical and experimental developments in the use of static largevolume presses(LVPs)1–3 and dynamic compression4,5 for studies under extreme high-pressure and high-temperature(HPHT)conditions.It also continues the previous year’s6 contemporary focus on superhydrides7–11 with extremely high superconducting temperatures Tc and addresses some controversial issues.12–14 In addition,it explores unconventional pressure-induced chemistry,particularly novel chemical stoichiometry and its impact on geochemistry and cosmochemistry in the deep interiors of Earth and other planets.18–21. 展开更多
关键词 static large volume presses novel physics CHEMISTRY earth sciences dynamic compression high pressure technology superconducting temperatures planetary sciences
在线阅读 下载PDF
Study on Improving the Teaching Effect of Mathematical Methods for Physics Using Manim Animation Technology
10
作者 Yong Niu Linhao Wang +1 位作者 Ying Wang Pan Wang 《Journal of Contemporary Educational Research》 2025年第10期215-222,共8页
With the development of educational digitalization,how to effectively apply digital animation technology to traditional classroom teaching has become an urgent problem to be solved.This study explores the application ... With the development of educational digitalization,how to effectively apply digital animation technology to traditional classroom teaching has become an urgent problem to be solved.This study explores the application of Manim in the course of Mathematical Methods for Physics.Taking the visualization of Fourier series,complex numbers,and other content as examples,it improves students’understanding of complex and abstract mathematical physics concepts through dynamic and visual teaching methods.The teaching effect shows that Manim helps to enhance students’learning experience,improve teaching efficiency and effectiveness,and has a positive impact on students’active learning ability.The research in this paper can provide references and inspiration for the educational digitalization of higher education. 展开更多
关键词 Manim Mathematical methods for physics Educational digitalization Animation visualization
在线阅读 下载PDF
Non-Hermitian Physics in Mesoscopic Electron Transport Through Coupled Quantum Dots
11
作者 Yiyang Li Jincheng Lu +1 位作者 Chen Wang Jian-Hua Jiang 《Chinese Physics Letters》 2025年第4期114-124,共11页
We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interpl... We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs. 展开更多
关键词 quantum dots magnetic fluxby electron mesoscopic transport non hermitian physics magnetic fluxand coherent couplings transport problem tunnel coupling
原文传递
A Posteriori Error Estimate of Multiphysics Discontinuous Galerkin Method for a Poroelasticity
12
作者 GE Zhi-hao HE Wen-long MA Meng-xia 《Chinese Quarterly Journal of Mathematics》 2025年第3期238-261,共24页
In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators bas... In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators based on multiphysics discontinuous Galerkin method for the poroelasticity model.And we prove the upper and lower bound of the proposed error estimators,which are numerically demonstrated to be computationally very efficient.Finally,we present numerical examples to verify and validate the efficiency of the proposed error estimators,which show that the adaptive scheme can overcome“locking phenomenon”and greatly reduce the computation cost. 展开更多
关键词 Poroelasticity model A posteriori error Multiphysics discontinuous Galerkin method
在线阅读 下载PDF
LatentPINNs:Generative physics-informed neural networks via a latent representation learning
13
作者 Mohammad H.Taufik Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期155-165,共11页
Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the... Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training. 展开更多
关键词 Physics-informed neural networks PDE solvers Latent representation learning
在线阅读 下载PDF
Physics-Guided Deep Network for Milling Dynamics Prediction
14
作者 Kunpeng Zhu Jun Li 《Engineering》 2025年第12期71-85,共15页
Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete k... Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete knowledge contained for model construction.On the other hand,due to the lack of guidance from physics,the data-driven models lack interpretability,making them challenging to generalize to practical applications.To meet these difficulties,a deep network model guided by milling dynamics is proposed in this study to predict the instantaneous milling force and spindle vibration under varying cutting conditions.The model uses a milling dynamics model to generate data sets to pre-train the deep network and then integrates the experimental data for fine-tuning to improve the model’s generalization and accuracy.Additionally,the vibration equation is incorporated into the loss function as the physical constraint,enhancing the model’s interpretability.A milling experiment is conducted to validate the effectiveness of the proposed model,and the results indicate that the physics incorporated could improve the network learning capability and interpretability.The predicted results are in good agreement with the measured values,with an average error as low as 2.6705%.The prediction accuracy is increased by 24.4367%compared to the pure data-driven model. 展开更多
关键词 Milling force DYNAMICS Physics-guided network PREDICTION
在线阅读 下载PDF
Towards the future of physics-and data-guided AI frameworks in computational mechanics
15
作者 Jinshuai Bai Yizheng Wang +8 位作者 Hyogu Jeong Shiyuan Chu Qingxia Wang Laith Alzubaidi Xiaoying Zhuang Timon Rabczuk Yi Min Xie Xi-Qiao Feng Yuantong Gu 《Acta Mechanica Sinica》 2025年第7期38-51,共14页
The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of ... The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems. 展开更多
关键词 Computational mechanics Physics-informed neural network Operator learning BIOMECHANICS Topology optimisation
原文传递
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:2
16
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
Parameterization and Explicit Modeling of Cloud Microphysics:Approaches, Challenges, and Future Directions
17
作者 Yangang LIU Man-Kong YAU +2 位作者 Shin-ichiro SHIMA Chunsong LU Sisi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期747-790,共44页
Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resoluti... Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resolution limited-area models such as cloud-resolving models(CRMs)and large-eddy simulation(LES)models.Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years,this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations:multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions;discrete vs“continuous”representation of hydrometeor types;turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation;theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology;and approaches for developing bulk microphysics parameterizations.Also presented are the spectral bin scheme and particle-based scheme(especially,super-droplet method)for representing explicit microphysics.Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations.Particle-resolved direct numerical simulation(DNS)models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds.Outstanding challenges and future research directions are explored as well. 展开更多
关键词 cloud microphysics PARAMETERIZATIONS systems theory bin microphysics particle-based microphysics particleresolved direct numerical simulations
在线阅读 下载PDF
Physics opportunities of the nuclear excitation by electron capture process
18
作者 Yi Yang Han-Xu Zhang +5 位作者 Yuan-Bin Wu Song Guo Xu Wang Chang-Bo Fu Yang Sun Yu-Gang Ma 《Nuclear Science and Techniques》 2025年第8期1-17,共17页
Nuclear excitation by electron capture(NEEC)is a fundamental process in nuclear physics.Despite its theoretical framework established nearly half a century ago,the experimental confirmation of NEEC remains elusive bec... Nuclear excitation by electron capture(NEEC)is a fundamental process in nuclear physics.Despite its theoretical framework established nearly half a century ago,the experimental confirmation of NEEC remains elusive because of significant technical challenges.A notable effort to validate NEEC experimentally involved the enhanced ^(93m)Mo isomer-depletion experiment,which was ultimately hindered by substantial noise interference.This mini-review provides a brief historical overview of NEEC studies and explores the role of NEEC processes in astrophysical environments and laser-induced plasmas.Several platforms have been proposed to facilitate the observation of NEEC,including traditional cooling-storage rings,ion accelerators,and electron beam ion traps.These approaches aim to enhance the nuclear excitation rate,thereby improving the signal-to-noise ratio.In addition,the employment of exotic vortex beams is discussed as a potential methodological approach to address these challenges. 展开更多
关键词 NEEC ISOMER PLASMAS ACCELERATOR
在线阅读 下载PDF
MaterialsGalaxy:A platform fusing experimental and theoretical data in condensed matter physics
19
作者 Tiannian Zhu Zhong Fang +1 位作者 Quansheng Wu Hongming Weng 《Chinese Physics B》 2025年第12期208-216,共9页
Modern materials science generates vast and diverse datasets from both experiments and computations,yet these multi-source,heterogeneous data often remain disconnected in isolated“silos”.Here,we introduce MaterialsG... Modern materials science generates vast and diverse datasets from both experiments and computations,yet these multi-source,heterogeneous data often remain disconnected in isolated“silos”.Here,we introduce MaterialsGalaxy,a comprehensive platform that deeply fuses experimental and theoretical data in condensed matter physics.Its core innovation is a structure similarity-driven data fusion mechanism that quantitatively links cross-modal records—spanning diffraction,crystal growth,computations,and literature—based on their underlying atomic structures.The platform integrates artificial intelligence(AI)tools,including large language models(LLMs)for knowledge extraction,generative models for crystal structure prediction,and machine learning property predictors,to enhance data interpretation and accelerate materials discovery.We demonstrate that MaterialsGalaxy effectively integrates these disparate data sources,uncovering hidden correlations and guiding the design of novel materials.By bridging the long-standing gap between experiment and theory,MaterialsGalaxy provides a new paradigm for data-driven materials research and accelerates the discovery of advanced materials. 展开更多
关键词 MaterialsGalaxy data fusion materials gene materials database
原文传递
Reduced-width amplitude in nuclear cluster physics
20
作者 De-Ye Tao Bo Zhou 《Nuclear Science and Techniques》 2025年第4期23-44,共22页
As a cluster overlap amplitude,the reduced-width amplitude is an important physical quantity for analyzing clustering in the nucleus depending on specified channels and has been calculated and widely applied in nuclea... As a cluster overlap amplitude,the reduced-width amplitude is an important physical quantity for analyzing clustering in the nucleus depending on specified channels and has been calculated and widely applied in nuclear cluster physics.In this review,we briefly revisit the theoretical framework for calculating the reduced-width amplitude,as well as the outlines of cluster models to obtain microscopic or semi-microscopic cluster wave functions.We also introduce the recent progress related to cluster overlap amplitudes,including the implementation of cross-section estimation and extension to three-body clustering analysis.Comprehensive examples are provided to demonstrate the application of the reduced-width amplitude in analyzing clustering structures. 展开更多
关键词 Nuclear clustering Microscopic cluster model Reduced-width amplitude
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部