Located in the Sichuan Basin,the Yuanba Gasfield is the deepest marine sour gasfield among those developed in China so far.Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth,...Located in the Sichuan Basin,the Yuanba Gasfield is the deepest marine sour gasfield among those developed in China so far.Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth,high content of hydrogen sulfide,mediumelow porosity and permeability,and small reservoir thickness.Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment.At present,the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world,so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties,such as safe and fast well drilling and completion,mud logging,well logging,downhole operation,safety and environmental protection.Based on the successful development experience of the Puguang Gasfield,therefore,Sinopec Southwest Petroleum Engineering Co.,Ltd.took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years.As a result,18 key items of technologies for ultra-deep sour gas reservoirs were developed,including horizontal-well drilling speed increasing technology,horizontal-well mud logging and well logging technology,downhole operation technology,and safety and environmental protection technology.These technologies were applied in 40 wells during thefirst and second phases of productivity construction of the Yuanba Gasfield.All the 40 wells have been built into commercial gas wells,and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved.These petroleum engineering technologies for ultra-deep sour gasfields play a reference role in exploring and developing similar gas reservoirs at home and abroad.展开更多
Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.Th...Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.These algorithms learn from data and unveil unseen patterns out of it The petroleum industry as a realm where huge volumes of data are generated every second is of great interest to this new technology.As the oil and gas industry is in the transition phase to oilfield digitization,there has been an increased drive to integrate data-driven modeling and machine learning(ML)algorithms in different petroleum engineering challenges.ML has been widely used in different areas of the industry.Many extensive studies have been devoted to exploring AI applicability in various disciplines of this industry;however,lack of two main features is noticeable.Most of the research is either not practical enough to be applicable in real-field challenges or limited to a specific problem and not generalizable.Attention must be given to data itself and the way it is classified and stored.Although there are sheer volumes of data coming from different disciplines,they reside in departmental silos and are not accessible by consumers.In order to derive as much insight as possible out of data,the data needs to be stored in a centralized repository from where the data can be readily consumed by different applications.展开更多
Petroleum engineering service is one of the pillars that support the petroleum industry in China. Being one of CNPC’s main businesses, the sector has always been escorting the Group to realize its strategic goals. Si...Petroleum engineering service is one of the pillars that support the petroleum industry in China. Being one of CNPC’s main businesses, the sector has always been escorting the Group to realize its strategic goals. Since a new round of specialized re-structuring in 2007, the sector has been promoting all its展开更多
Major bottlenecks in the development of the sector Compared with foreign peers, the sector still lags behind in capacity and performance, reflecting the sector needs to do more in improving technology innovation abili...Major bottlenecks in the development of the sector Compared with foreign peers, the sector still lags behind in capacity and performance, reflecting the sector needs to do more in improving technology innovation ability, setting up favorable mechanism and investing more in technology research. The current situation indicates that the following factors have been affecting the development of the sector.展开更多
In Ref.[1],Eq.(8)has a typo,the following replacement should be done.γ_(bb)/2rδ/δr(rδ(r,t)/δr=2γ_(bb)/R_(bb)-Þ(t,t)-Ⅱ[h[r,t)](bubble=drop-bubble=drop)The publisher regrets an error in the original–article...In Ref.[1],Eq.(8)has a typo,the following replacement should be done.γ_(bb)/2rδ/δr(rδ(r,t)/δr=2γ_(bb)/R_(bb)-Þ(t,t)-Ⅱ[h[r,t)](bubble=drop-bubble=drop)The publisher regrets an error in the original–article,and the sentence that explained the equation“Eqs.(8)–(10)show the augmented Young–Laplace equation for the interactions of gas bubbles or liquid droplets in different configurations,where Rb is the bubble/drop radius,Rp is the particle radius,Rbp=(1/Rb+1/Rp)1.展开更多
Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides ne...Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.展开更多
Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal ...Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal characteristics of block formation,fracture development,and casing deformation occurrence,this paper employs an integrated geological—engineering research approach to identify the primary mechanisms governing casing deformation within the block and proposes countermeasures to prevent such deformation.The present research indicates the following findings:(1)The block has undergone multiple phases of tectonic superposition,with fracture development serving as the geological factor causing casing deformation.(2)Fracturing activation constitutes the engineering factor causing casing deformation,with 4 mm of formation slip inducing deformation.(3)The fracture activation risk map shows that Class Ⅰ and Class Ⅱ fractures account for 73.36%of the total recorded in the block.Within the most susceptible Class I risk zone,the critical activation pressure increment for fracturing operations ranges from 13.43 MPa to 13.99 MPa.Based on the distribution of casing failure risk zones identified in the fracture activation risk map,this paper proposes relevant technical countermeasures for preventing casing failure from three perspectives:shale gas well location deployment,drilling techniques,and fracturing techniques.These measures provide robust support for safeguarding the integrity of casing systems within the studied block.展开更多
Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the i...Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the ice sheet.In order to obtain the focus of these scientific explorations,the Antarctic drilling engineering is constantly developing.The drilling fluid performance directly determines the success or failure of drilling engineering.In order to enhance the poor performance for drilling fluids due to poor dispersion stability and easy settling of organoclay at ultra-low temperatures,the small-molecule wetting agent(HSR)for drilling fluid suitable for Antarctica was prepared by oleic acid,diethanolamine and benzoic acid as raw materials.Its chemical structure,properties and action mechanism were investigated by various experimental methods.The experimental results showed that 2%HSR could improve the colloidal rate for drilling fluid from 6.4%to 84.8%,and the increase rate of yield point was up to 167%.Meanwhile,it also made the drilling fluid excellent in shear dilution and thixotropy.In addition,2%HSR could increase the density from 0.872 to 0.884 g/cm^(3) at-55 ficial.And the drilling fluid with 2%HSR had a good thermal conductivity of 0.1458 W/(m·K)at-55 ficial.This study gives a new direction for the research of drilling fluid treatment agents suitable for the Antarctic region,which will provide strong support for the scientific exploration of the Antarctic region.展开更多
As the well drilling depth has broken through the 10,000 m in China,accurate measurements of downhole engineering parameters,such as annulus temperature and pressure for the whole wellbore,are significant in controlli...As the well drilling depth has broken through the 10,000 m in China,accurate measurements of downhole engineering parameters,such as annulus temperature and pressure for the whole wellbore,are significant in controlling potential downhole complexities.In this present work,a new micro-measurer is developed by integrating measurements of downhole temperature,pressure,magnetic field strength,and its own dynamic signals.The micro-measurer can flow with drilling fluid from the drillstring to the bottomhole and then float up back to the ground via the wellbore annulus.Compared with other downhole measurement tools that are fixedly connected to the drill string,its“measure-and-move-on”approach reduces the residence time in the high-temperature and high-pressure zone at the bottomhole;moreover,both the pressure and temperature at different well depth can be measured,thereby the temperature and pressure profiles of the whole wellbore can be constructed.In addition,the bluetooth low energy(BLE)technique is applied to offer the micro-measurer with the capability of wireless information transmission;while hydrodynamic optimization of the micro-measurer is carried out to design the structure of the micro-measurer,which can promote its recovery rate from downhole.In addition,an intelligent joint for releasing micro-measurers from the wellbore annulus is also proposed,aiming to overcome the limitation imposed by the nozzle on the size of the micro-measurer.Both the indoor experiments and the field tests have verified the feasibility of the newly designed micro-measurer,which is a key step for establishing a complete downhole internet of things(IoT)system to serve the intelligent drilling in the future.展开更多
Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and ...Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals.However,studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored.In this review,we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics,especially for poly(phenylene sulfide)(PPS),poly(aryl ether)s including poly(ether ether ketone)(PEEK),polysulfone(PSU),polyphenylsulfone(PPSU)and polyethersulfone(PES).We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field.展开更多
As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, form...As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, formations and map their petroleum generation capabilities across local, regional and basin-wide scales. The measurement of total organic carbon, distinguishing and categorizing the kerogen types in terms oil-prone versus gas-prone, and using vitrinite reflectance and Rock-Eval data to estimate thermal maturity are standard practice in the industry and applied to samples from most wellbores drilled. It is the trends of stable isotopes ratios, particularly those of carbon, the wetness ra- tio (C1/~'(C2+C3)), and certain chemical biomarkers that have proved to be most informative about the status of shales as a petroleum system. These data make it possible to identify production "sweet- spots", discriminate oil-, gas-liquid- and gas-prone shales from kerogen compositions and thermal ma- turities. Rollovers and reversals of ethane and propane carbon isotope ratios are particularly indica- tive of high thermal maturity exposure of an organic-rich shale. Comparisons of hopane, strerane and terpane biomarkers with vitrinite reflectance (Ro) measurements of thermal maturity highlight dis- crepancies suggesting that Ro is not always a reliable indicator of thermal maturity. Major and trace element inorganic geochemistry data and ratios provides useful information regarding provenance, paleoenvironments, and stratigraphic-layer discrimination. This review considers the data measure- ment, analysis and interpretation of techniques associated with kerogen typing, thermal maturity, sta- ble and non-stable isotopic ratios for rocks and gases derived from them, production sweet-spot identi- fication, geochemical biomarkers and inorganic chemical indicators. It also highlights uncertainties and discrepancies observed in their practical application, and the numerous outstanding questions as- sociated with them.展开更多
Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild ...Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild scaling tendencies to extreme. In general, the scale deposit will cause a reduction in formation pores, declining productivity and eventually blockage of the wellbore and hence unexpected downtime if it is allowed to persevere. To overcome this, the productivity of an oil and gas well is ensured by handling scale deposits via removal or prevention methods. Scale prevention is the best and cost-e ective method for handling scale deposits that ensures production continuity. Inhibition through 'threshold' scale inhibitor treatment is the most common method that is proven to prevent or reduce likely deposits. This paper examines the art of synthetic scale inhibitors, in particular, threshold scale inhibitors in oil and gas production. It discusses the chemistry of those inhibitors, inhibition mechanisms, treatment methods and key properties for their applications. It also highlights the chemistry of the synthetic routes often used to produce them in the laboratory and/or industry. Finally, it highlights the environmental concerns for the applicability of threshold scale inhibitors.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
An electrocoagulation treatment process was developed for treatment and upgrade of petroleum refinery effluent (wastewater), instead of the conventional methods, which can consume higher amounts of chemicals and pro...An electrocoagulation treatment process was developed for treatment and upgrade of petroleum refinery effluent (wastewater), instead of the conventional methods, which can consume higher amounts of chemicals and produce larger amounts of sludge. The effect of the operation parameters, such as current density, initial pH, anode material, anode dissolution, energy consumption and electrolysis time, on treatment efficiency was investigated. The experimental results showed that the effluent can be effectively treated under optimal conditions. Fourier transform infrared (FTIR) analysis of the effluent, and scanning electron microscopy (SEM) coupled with energy dispersive analysis of X-rays (EDAX) of the sludge produced, revealed that the unwanted pollutants can be eliminated. The electrocoagulation treatment process was assessed by using the removal efficiency of chemical oxygen demand (COD), total suspended solids (TSS), and the general physicochemical characteristics of wastewater, and the results showed that the electrocoagulation is an efficient process for recycling of petroleum wastewater; it is faster and provides better quality of treated water than the conventional methods.展开更多
Shales, the most abundant of sedimentary rocks, are valued as the source-rocks and seals to porous petroleum reservoirs. Over the past-twenty years, organic-rich shales have also emerged as valuable petroleum systems ...Shales, the most abundant of sedimentary rocks, are valued as the source-rocks and seals to porous petroleum reservoirs. Over the past-twenty years, organic-rich shales have also emerged as valuable petroleum systems (reservoir, seal, and source rocks contained in the same for- mation). As such they have become primary targets for petroleum exploration and exploitation. This Part 1 of a three-part review addresses the bulk properties, multi-scale geometry and gas adsorption characteristics of these diverse and complex rocks. Shales display extremely low permeability, and their porosity is also low, but multi-scale. Characterizing the geometry and interconnectivity of the pore-structure frameworks with the natural-fracture networks within shales is essential for establish- ing their petroleum exploitation potential. Organic-rich shales typically contain two distinct types of porosity: matrix porosity and fracture porosity. In addition to inter-granular porosity, the matrix po- rosity includes two types of mineral-hosted porosity: inorganic-mineral-hosted porosity (1P); and, organic-matter-hosted (within the kerogen) porosity (OP). Whereas, the fracture porosity and per- meability is crucial for petroleum production from shales, it is within the OP where, typically, much of the in-situ oil and gas resources resides, and from where it needs to be mobilized. OP increases signifi- cantly as shales become more thermally mature (i.e., within the gas generation zones), and plays a key role in the ultimate recovery from shale-gas systems. Shales' methane sorption capacities (MSC) tends to be positively correlated with their total organic carbon content (TOC), thermal maturation, and mi- cropore volume. Clay minerals also significantly influence key physical properties of shale related to fluid flow (permeability) and response to stress (fracability) that determine their prospectivity for pe- troleum exploitation. Clay minerals can also adsorb gas, some much better than others. The surface area of the pore structure of shales can be positively or negatively correlated with TOC content, de- pending upon mineralogy and thermal maturity, and can influence its gas adsorption capacity. Part 2 of this three-part review considers, in a separate article, the geochemistry and thermal maturity cha- racteristics of shale; whereas Part 3, addresses the geomechanical attributes of shales, including their complex wettability, adsorption, water imbibition and "fracability" characteristics. The objectives of this Part 1 of the review is to identify important distinguishing characteristics related to the bulk properties of the most-prospective, petroleum-rich shales.展开更多
Modeling geomechanical properties of shales to make sense of their complex properties is at the forefront of petroleum exploration and exploitation application and has received much re- search attention in recent year...Modeling geomechanical properties of shales to make sense of their complex properties is at the forefront of petroleum exploration and exploitation application and has received much re- search attention in recent years. A shale's key geomechanical properties help to identify its "fracibility" its fluid flow patterns and rates, and its in-place petroleum resources and potential commercial re- serves. The models and the information they provide, in turn, enable engineers to design drilling pat- terns, fracture-stimulation programs and materials selection that will avoid formation damage and op- timize recovery of petroleum. A wide-range of tools, technologies, experiments and mathematical techniques are deployed to achieve this. Characterizing the interconnected fracture, permeability and porosity network is an essential step in understanding a shales highly-anisotropic features on multiple scales (nano to macro). Weli-log data, and its petrophysical interpretation to calibrate many geome- chanical metrics to those measured in rock samples by laboratory techniques plays a key role in pro- viding affordable tools that can be deployed cost-effectively in multiple well bores. Likewise, micro- seismic data helps to match fracture density and propagation observed on a reservoir scale with pre- dictions from simulations and laboratory tests conducted on idealised/simplified discrete fracture net- work models. Shales complex wettability, adsorption and water imbibition characteristics have a sig- nificant influence on potential formation damage during stimulation and the short-term and long-term flow of petroleum achievable. Many gas flow mechanisms and models are proposed taking into ac- count the multiple flow mechanisms involved (e.g., desorption, diffusion, slippage and viscous flow op- erating at multiple porosity levels from nano- to macro-scales). Fitting historical production data and well decline curves to model predictions helps to verify whether model's geomechanical assumptions are realistic or not. This review discusses the techniques applied and the models developed that are relevant to applied geomechanics, highlighting examples of their application and the numerous out- standin~ questions associated with them.展开更多
After two well tests in the Asmari well#A, located in the North Dezful zone, it was concluded that in the Jurassic Mus/Alan/Neyriz and Upper Sargelu reservoirs, highly mature colorless oil and gas were trapped, includ...After two well tests in the Asmari well#A, located in the North Dezful zone, it was concluded that in the Jurassic Mus/Alan/Neyriz and Upper Sargelu reservoirs, highly mature colorless oil and gas were trapped, including 4%-6% H2 S. The alternation of Garau shale and the Gotnia anhydrite seal was so efficient that it did not allow the upward migration of petroleum from Jurassic reservoirs to higher levels. Descriptive ratios, chromatograms, pick correlation and cross plots demonstrated that the oil and gas have been derived from a TOC-enriched sequence, consisting of the base of the Garau and the top of the Sargelu Formations. This highly organic matter-rich sequence is traceable as an oil shale in other parts of the North Dezful zone, such as the Gashun section. The petroleum accumulations in both reservoirs are identical, have the same maturity and the same source. Diagrams of δ13 C2 versus δ13 C3, δ13 C1 versus wetness of gas(C1/C2+C3) and δ13 C1 versus δDC1 suggest that the gas is derived from a highly mature source. There are indications of TSR effects on the original petroleum that could have changed the volumetric and isotopic composition of the oil and gas. This result requires more careful study of the petroleum components to be undertaken.展开更多
TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these appl...TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.展开更多
Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing ...Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.展开更多
基金supported by the Sinopec Technical Development Project"Pilot Test for Ultra-deep Horizontal Well Acid Fracturing Technology for Marine Reservoirs in Yuanba Gasfield"(No.:GJ-258-1254)Sinopec Group Technical Application Project“Optimization Design of Teas for High-presure High-yield Sour Gas Wells in the Northeaster Sichuan Basin”(No.:JPO8001).
文摘Located in the Sichuan Basin,the Yuanba Gasfield is the deepest marine sour gasfield among those developed in China so far.Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth,high content of hydrogen sulfide,mediumelow porosity and permeability,and small reservoir thickness.Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment.At present,the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world,so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties,such as safe and fast well drilling and completion,mud logging,well logging,downhole operation,safety and environmental protection.Based on the successful development experience of the Puguang Gasfield,therefore,Sinopec Southwest Petroleum Engineering Co.,Ltd.took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years.As a result,18 key items of technologies for ultra-deep sour gas reservoirs were developed,including horizontal-well drilling speed increasing technology,horizontal-well mud logging and well logging technology,downhole operation technology,and safety and environmental protection technology.These technologies were applied in 40 wells during thefirst and second phases of productivity construction of the Yuanba Gasfield.All the 40 wells have been built into commercial gas wells,and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved.These petroleum engineering technologies for ultra-deep sour gasfields play a reference role in exploring and developing similar gas reservoirs at home and abroad.
文摘Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.These algorithms learn from data and unveil unseen patterns out of it The petroleum industry as a realm where huge volumes of data are generated every second is of great interest to this new technology.As the oil and gas industry is in the transition phase to oilfield digitization,there has been an increased drive to integrate data-driven modeling and machine learning(ML)algorithms in different petroleum engineering challenges.ML has been widely used in different areas of the industry.Many extensive studies have been devoted to exploring AI applicability in various disciplines of this industry;however,lack of two main features is noticeable.Most of the research is either not practical enough to be applicable in real-field challenges or limited to a specific problem and not generalizable.Attention must be given to data itself and the way it is classified and stored.Although there are sheer volumes of data coming from different disciplines,they reside in departmental silos and are not accessible by consumers.In order to derive as much insight as possible out of data,the data needs to be stored in a centralized repository from where the data can be readily consumed by different applications.
文摘Petroleum engineering service is one of the pillars that support the petroleum industry in China. Being one of CNPC’s main businesses, the sector has always been escorting the Group to realize its strategic goals. Since a new round of specialized re-structuring in 2007, the sector has been promoting all its
文摘Major bottlenecks in the development of the sector Compared with foreign peers, the sector still lags behind in capacity and performance, reflecting the sector needs to do more in improving technology innovation ability, setting up favorable mechanism and investing more in technology research. The current situation indicates that the following factors have been affecting the development of the sector.
文摘In Ref.[1],Eq.(8)has a typo,the following replacement should be done.γ_(bb)/2rδ/δr(rδ(r,t)/δr=2γ_(bb)/R_(bb)-Þ(t,t)-Ⅱ[h[r,t)](bubble=drop-bubble=drop)The publisher regrets an error in the original–article,and the sentence that explained the equation“Eqs.(8)–(10)show the augmented Young–Laplace equation for the interactions of gas bubbles or liquid droplets in different configurations,where Rb is the bubble/drop radius,Rp is the particle radius,Rbp=(1/Rb+1/Rp)1.
基金support of the National Natural Science Foundation of China(Grant No.52074332).
文摘Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.
文摘Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal characteristics of block formation,fracture development,and casing deformation occurrence,this paper employs an integrated geological—engineering research approach to identify the primary mechanisms governing casing deformation within the block and proposes countermeasures to prevent such deformation.The present research indicates the following findings:(1)The block has undergone multiple phases of tectonic superposition,with fracture development serving as the geological factor causing casing deformation.(2)Fracturing activation constitutes the engineering factor causing casing deformation,with 4 mm of formation slip inducing deformation.(3)The fracture activation risk map shows that Class Ⅰ and Class Ⅱ fractures account for 73.36%of the total recorded in the block.Within the most susceptible Class I risk zone,the critical activation pressure increment for fracturing operations ranges from 13.43 MPa to 13.99 MPa.Based on the distribution of casing failure risk zones identified in the fracture activation risk map,this paper proposes relevant technical countermeasures for preventing casing failure from three perspectives:shale gas well location deployment,drilling techniques,and fracturing techniques.These measures provide robust support for safeguarding the integrity of casing systems within the studied block.
基金financially supported by the National Natural Science Foundation of China(No.52274021)the National Key Research and Development Program of China(No.2021YFA0719102)。
文摘Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the ice sheet.In order to obtain the focus of these scientific explorations,the Antarctic drilling engineering is constantly developing.The drilling fluid performance directly determines the success or failure of drilling engineering.In order to enhance the poor performance for drilling fluids due to poor dispersion stability and easy settling of organoclay at ultra-low temperatures,the small-molecule wetting agent(HSR)for drilling fluid suitable for Antarctica was prepared by oleic acid,diethanolamine and benzoic acid as raw materials.Its chemical structure,properties and action mechanism were investigated by various experimental methods.The experimental results showed that 2%HSR could improve the colloidal rate for drilling fluid from 6.4%to 84.8%,and the increase rate of yield point was up to 167%.Meanwhile,it also made the drilling fluid excellent in shear dilution and thixotropy.In addition,2%HSR could increase the density from 0.872 to 0.884 g/cm^(3) at-55 ficial.And the drilling fluid with 2%HSR had a good thermal conductivity of 0.1458 W/(m·K)at-55 ficial.This study gives a new direction for the research of drilling fluid treatment agents suitable for the Antarctic region,which will provide strong support for the scientific exploration of the Antarctic region.
基金supported by the National Natural Science Foundation of China(No.U22B2072)the Research Project of China Petroleum Science and Technology Innovation Fund(No.2025DQ02-0144).
文摘As the well drilling depth has broken through the 10,000 m in China,accurate measurements of downhole engineering parameters,such as annulus temperature and pressure for the whole wellbore,are significant in controlling potential downhole complexities.In this present work,a new micro-measurer is developed by integrating measurements of downhole temperature,pressure,magnetic field strength,and its own dynamic signals.The micro-measurer can flow with drilling fluid from the drillstring to the bottomhole and then float up back to the ground via the wellbore annulus.Compared with other downhole measurement tools that are fixedly connected to the drill string,its“measure-and-move-on”approach reduces the residence time in the high-temperature and high-pressure zone at the bottomhole;moreover,both the pressure and temperature at different well depth can be measured,thereby the temperature and pressure profiles of the whole wellbore can be constructed.In addition,the bluetooth low energy(BLE)technique is applied to offer the micro-measurer with the capability of wireless information transmission;while hydrodynamic optimization of the micro-measurer is carried out to design the structure of the micro-measurer,which can promote its recovery rate from downhole.In addition,an intelligent joint for releasing micro-measurers from the wellbore annulus is also proposed,aiming to overcome the limitation imposed by the nozzle on the size of the micro-measurer.Both the indoor experiments and the field tests have verified the feasibility of the newly designed micro-measurer,which is a key step for establishing a complete downhole internet of things(IoT)system to serve the intelligent drilling in the future.
基金supported by the National Natural Science Foundation of China(Nos.22125103 and 22301077)STCSM(22JC140100)Shanghai Pujiang Program(No.22PJ1403200)。
文摘Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals.However,studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored.In this review,we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics,especially for poly(phenylene sulfide)(PPS),poly(aryl ether)s including poly(ether ether ketone)(PEEK),polysulfone(PSU),polyphenylsulfone(PPSU)and polyethersulfone(PES).We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field.
基金the Department of Science & Technology (DST Ministry of Science & Technology, Government of India), for providing funding for his research through the DST-Inspire Assured Opportunity of Research Career (AORC) scheme
文摘As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, formations and map their petroleum generation capabilities across local, regional and basin-wide scales. The measurement of total organic carbon, distinguishing and categorizing the kerogen types in terms oil-prone versus gas-prone, and using vitrinite reflectance and Rock-Eval data to estimate thermal maturity are standard practice in the industry and applied to samples from most wellbores drilled. It is the trends of stable isotopes ratios, particularly those of carbon, the wetness ra- tio (C1/~'(C2+C3)), and certain chemical biomarkers that have proved to be most informative about the status of shales as a petroleum system. These data make it possible to identify production "sweet- spots", discriminate oil-, gas-liquid- and gas-prone shales from kerogen compositions and thermal ma- turities. Rollovers and reversals of ethane and propane carbon isotope ratios are particularly indica- tive of high thermal maturity exposure of an organic-rich shale. Comparisons of hopane, strerane and terpane biomarkers with vitrinite reflectance (Ro) measurements of thermal maturity highlight dis- crepancies suggesting that Ro is not always a reliable indicator of thermal maturity. Major and trace element inorganic geochemistry data and ratios provides useful information regarding provenance, paleoenvironments, and stratigraphic-layer discrimination. This review considers the data measure- ment, analysis and interpretation of techniques associated with kerogen typing, thermal maturity, sta- ble and non-stable isotopic ratios for rocks and gases derived from them, production sweet-spot identi- fication, geochemical biomarkers and inorganic chemical indicators. It also highlights uncertainties and discrepancies observed in their practical application, and the numerous outstanding questions as- sociated with them.
文摘Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild scaling tendencies to extreme. In general, the scale deposit will cause a reduction in formation pores, declining productivity and eventually blockage of the wellbore and hence unexpected downtime if it is allowed to persevere. To overcome this, the productivity of an oil and gas well is ensured by handling scale deposits via removal or prevention methods. Scale prevention is the best and cost-e ective method for handling scale deposits that ensures production continuity. Inhibition through 'threshold' scale inhibitor treatment is the most common method that is proven to prevent or reduce likely deposits. This paper examines the art of synthetic scale inhibitors, in particular, threshold scale inhibitors in oil and gas production. It discusses the chemistry of those inhibitors, inhibition mechanisms, treatment methods and key properties for their applications. It also highlights the chemistry of the synthetic routes often used to produce them in the laboratory and/or industry. Finally, it highlights the environmental concerns for the applicability of threshold scale inhibitors.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
基金the financial support from the Ministry of Higher Education and Scientific Research-Iraq
文摘An electrocoagulation treatment process was developed for treatment and upgrade of petroleum refinery effluent (wastewater), instead of the conventional methods, which can consume higher amounts of chemicals and produce larger amounts of sludge. The effect of the operation parameters, such as current density, initial pH, anode material, anode dissolution, energy consumption and electrolysis time, on treatment efficiency was investigated. The experimental results showed that the effluent can be effectively treated under optimal conditions. Fourier transform infrared (FTIR) analysis of the effluent, and scanning electron microscopy (SEM) coupled with energy dispersive analysis of X-rays (EDAX) of the sludge produced, revealed that the unwanted pollutants can be eliminated. The electrocoagulation treatment process was assessed by using the removal efficiency of chemical oxygen demand (COD), total suspended solids (TSS), and the general physicochemical characteristics of wastewater, and the results showed that the electrocoagulation is an efficient process for recycling of petroleum wastewater; it is faster and provides better quality of treated water than the conventional methods.
基金the Department of Science and Technology (DST Ministry of Science and Technology, Government of India), for providing funding for his research through the DST-Inspire Assured Opportunity of Research Career (AORC) scheme
文摘Shales, the most abundant of sedimentary rocks, are valued as the source-rocks and seals to porous petroleum reservoirs. Over the past-twenty years, organic-rich shales have also emerged as valuable petroleum systems (reservoir, seal, and source rocks contained in the same for- mation). As such they have become primary targets for petroleum exploration and exploitation. This Part 1 of a three-part review addresses the bulk properties, multi-scale geometry and gas adsorption characteristics of these diverse and complex rocks. Shales display extremely low permeability, and their porosity is also low, but multi-scale. Characterizing the geometry and interconnectivity of the pore-structure frameworks with the natural-fracture networks within shales is essential for establish- ing their petroleum exploitation potential. Organic-rich shales typically contain two distinct types of porosity: matrix porosity and fracture porosity. In addition to inter-granular porosity, the matrix po- rosity includes two types of mineral-hosted porosity: inorganic-mineral-hosted porosity (1P); and, organic-matter-hosted (within the kerogen) porosity (OP). Whereas, the fracture porosity and per- meability is crucial for petroleum production from shales, it is within the OP where, typically, much of the in-situ oil and gas resources resides, and from where it needs to be mobilized. OP increases signifi- cantly as shales become more thermally mature (i.e., within the gas generation zones), and plays a key role in the ultimate recovery from shale-gas systems. Shales' methane sorption capacities (MSC) tends to be positively correlated with their total organic carbon content (TOC), thermal maturation, and mi- cropore volume. Clay minerals also significantly influence key physical properties of shale related to fluid flow (permeability) and response to stress (fracability) that determine their prospectivity for pe- troleum exploitation. Clay minerals can also adsorb gas, some much better than others. The surface area of the pore structure of shales can be positively or negatively correlated with TOC content, de- pending upon mineralogy and thermal maturity, and can influence its gas adsorption capacity. Part 2 of this three-part review considers, in a separate article, the geochemistry and thermal maturity cha- racteristics of shale; whereas Part 3, addresses the geomechanical attributes of shales, including their complex wettability, adsorption, water imbibition and "fracability" characteristics. The objectives of this Part 1 of the review is to identify important distinguishing characteristics related to the bulk properties of the most-prospective, petroleum-rich shales.
基金the Department of Science & Technology (DST Ministry of Science & Technology, Government of India), for providing funding for his research through the DST-Inspire Assured Opportunity of Research Career (AORC) scheme
文摘Modeling geomechanical properties of shales to make sense of their complex properties is at the forefront of petroleum exploration and exploitation application and has received much re- search attention in recent years. A shale's key geomechanical properties help to identify its "fracibility" its fluid flow patterns and rates, and its in-place petroleum resources and potential commercial re- serves. The models and the information they provide, in turn, enable engineers to design drilling pat- terns, fracture-stimulation programs and materials selection that will avoid formation damage and op- timize recovery of petroleum. A wide-range of tools, technologies, experiments and mathematical techniques are deployed to achieve this. Characterizing the interconnected fracture, permeability and porosity network is an essential step in understanding a shales highly-anisotropic features on multiple scales (nano to macro). Weli-log data, and its petrophysical interpretation to calibrate many geome- chanical metrics to those measured in rock samples by laboratory techniques plays a key role in pro- viding affordable tools that can be deployed cost-effectively in multiple well bores. Likewise, micro- seismic data helps to match fracture density and propagation observed on a reservoir scale with pre- dictions from simulations and laboratory tests conducted on idealised/simplified discrete fracture net- work models. Shales complex wettability, adsorption and water imbibition characteristics have a sig- nificant influence on potential formation damage during stimulation and the short-term and long-term flow of petroleum achievable. Many gas flow mechanisms and models are proposed taking into ac- count the multiple flow mechanisms involved (e.g., desorption, diffusion, slippage and viscous flow op- erating at multiple porosity levels from nano- to macro-scales). Fitting historical production data and well decline curves to model predictions helps to verify whether model's geomechanical assumptions are realistic or not. This review discusses the techniques applied and the models developed that are relevant to applied geomechanics, highlighting examples of their application and the numerous out- standin~ questions associated with them.
基金supported by the Directorate of Exploration of the NIOC
文摘After two well tests in the Asmari well#A, located in the North Dezful zone, it was concluded that in the Jurassic Mus/Alan/Neyriz and Upper Sargelu reservoirs, highly mature colorless oil and gas were trapped, including 4%-6% H2 S. The alternation of Garau shale and the Gotnia anhydrite seal was so efficient that it did not allow the upward migration of petroleum from Jurassic reservoirs to higher levels. Descriptive ratios, chromatograms, pick correlation and cross plots demonstrated that the oil and gas have been derived from a TOC-enriched sequence, consisting of the base of the Garau and the top of the Sargelu Formations. This highly organic matter-rich sequence is traceable as an oil shale in other parts of the North Dezful zone, such as the Gashun section. The petroleum accumulations in both reservoirs are identical, have the same maturity and the same source. Diagrams of δ13 C2 versus δ13 C3, δ13 C1 versus wetness of gas(C1/C2+C3) and δ13 C1 versus δDC1 suggest that the gas is derived from a highly mature source. There are indications of TSR effects on the original petroleum that could have changed the volumetric and isotopic composition of the oil and gas. This result requires more careful study of the petroleum components to be undertaken.
基金the supports from the Clean Coal ProgramSchool of Energy Resources in Wyoming
文摘TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.
基金the financial support from the Natural Science Foundation of China (NSFC,51221003,U1262201)the Science Foundation of China University of Petroleum,Beijing (No.00000)supported by other projects (Grant Numbers:2014A-4214,2013AA064803,2011ZX05009-005)
文摘Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.