期刊文献+
共找到91,929篇文章
< 1 2 250 >
每页显示 20 50 100
Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures 被引量:1
1
作者 LI Guoxin JIA Chengzao +2 位作者 ZHAO Qun ZHOU Tianqi GAO Jinliang 《Petroleum Exploration and Development》 2025年第1期33-49,共17页
Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in c... Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in coal rocks.Inspired by the discovery of shale oil and gas,and guided by“the overall exploration concept of considering coal rock as reservoir”,breakthroughs in the exploration and development of coal-rock gas have been achieved in deep coal seams with favorable preservation conditions,thereby opening up a new development frontier for the unconventional gas in coal-rock reservoirs.Based on the data from exploration and development practices,a systematic study on the accumulation mechanism of coal-rock gas has been conducted.The mechanisms of“three fields”controlling coal-rock gas accumulation are revealed.It is confirmed that the coal-rock gas is different from CBM in accumulation process.The whole petroleum systems in the Carboniferous–Permian transitional facies coal measures of the eastern margin of the Ordos Basin and in the Jurassic continental facies coal measures of the Junggar Basin are characterized,and the key research directions for further developing the whole petroleum system theory of coal measures are proposed.Coal rocks,compared to shale,possess intense hydrocarbon generation potential,strong adsorption capacity,dual-medium reservoir properties,and partial or weak oil and gas self-sealing capacity.Additionally,unlike other unconventional gas such as shale gas and tight gas,coal-rock gas exhibits more complex accumulation characteristics,and its accumulation requires a certain coal-rock play form lithological and structural traps.Coal-rock gas also has the characteristics of conventional fractured gas reservoirs.Compared with the basic theory and model of the whole petroleum system established based on detrital rock formations,coal measures have distinct characteristics and differences in coal-rock reservoirs and source-reservoir coupling.The whole petroleum system of coal measures is composed of various types of coal-measure hydrocarbon plays with coal(and dark shale)in coal measures as source rock and reservoir,and with adjacent tight layers as reservoirs or cap or transport layers.Under the action of source-reservoir coupling,coal-rock gas is accumulated in coal-rock reservoirs with good preservation conditions,tight oil/gas is accumulated in tight layers,conventional oil/gas is accumulated in traps far away from sources,and coalbed methane is accumulated in coal-rock reservoirs damaged by later geological processes.The proposed whole petroleum system of coal measures represents a novel type of whole petroleum system. 展开更多
关键词 coal measure coal-rock gas coalbed methane tight gas coal-rock play accumulation mechanism whole petroleum system whole petroleum system of coal measures
在线阅读 下载PDF
Application of the whole petroleum system in the evaluation of the global natural gas hydrate resource
2
作者 PANG Xiongqi JIA Chengzao +3 位作者 XU Zhi HU Tao BAO Liyin PU Tingyu 《Petroleum Exploration and Development》 2025年第2期301-315,共15页
Natural gas hydrate(NGH),as a widely recognized clean energy,has shown a significant resource potential.However,due to the lack of a unified evaluation methodology and the difficult determination of key parameters,the... Natural gas hydrate(NGH),as a widely recognized clean energy,has shown a significant resource potential.However,due to the lack of a unified evaluation methodology and the difficult determination of key parameters,the evaluation results of global NGH resource are greatly different.This paper establishes a quantitative relationship between NGH resource potential and conventional oil and gas resource and a NGH resource evaluation model based on the whole petroleum system(WPS)and through the analysis of dynamic field controlling hydrocarbon accumulation.The global NGH initially in-place and recoverable resources are inverted through the Monte Carlo simulation,and verified by using the volume analogy method based on drilling results and the trend analysis method of previous evaluation results.The proposed evaluation model considers two genetic mechanisms of natural gas(biological degradation and thermal degradation),surface volume conversion factor difference between conventional natural gas and NGH,and the impacts of differences in favorable distribution area and thickness and in other aspects on the results of NGH resource evaluation.The study shows that the global NGH initially in-place and recoverable resources are 99×10^(12) m^(3) and 30×10^(12) m3,with averages of 214×10^(12) m^(3) and 68×10^(12) m^(3),respectively,less than 5% of the total conventional oil and gas resources,and they can be used as a supplement for the future energy of the world.The proposed NGH resource evaluation model creates a new option of evaluation method and technology,and generates reliable data of NGH resource according to the reliability comprehensive analysis and test,providing a parameter basis for subsequent NGH exploration and development. 展开更多
关键词 natural gas hydrate whole petroleum system unconventional oil and gas petroleum resource evaluation fossil fuel natural energy
在线阅读 下载PDF
China’s Oil and Gas Industry and Low-carbon Development Trends——China Petroleum Enterprise Association Releases Series of Blue Books
3
作者 Yin Lu 《China Oil & Gas》 2025年第2期63-66,共4页
In the global wave of energy transition and low-carbon development,China Petroleum Enterprise Association,together with the University of International Business and Economics,China University of Petroleum-Beijing,Sout... In the global wave of energy transition and low-carbon development,China Petroleum Enterprise Association,together with the University of International Business and Economics,China University of Petroleum-Beijing,Southwest Petroleum University,and other institutions,released four significant blue books on April 17:Annual Operating Report of China’s Natural Gas Industry Blue Book(2024-2025),China Oil&Gas Industry Development Analysis and Outlook Blue Book(2024-2025),China Low-Carbon Economy Development Report Blue Book(2024-2025),and Refined Oil and New Energy Development Report Blue Book(2024-2025).This series of blue books provides a comprehensive and high-level analysis of the development,issues,and trends in the oil and gas industry,offering a detailed depiction of the China Oil&Gas industry and its progress towards low-carbon development. 展开更多
关键词 natural gas blue books natural gas industry China oil gas industry development energy transition oil gas industry China Petroleum Enterprise Association low carbon development
在线阅读 下载PDF
Research on Carbon Governance Mechanisms in the Petroleum Industry amid China’s Carbon Market Expansion
4
作者 Guo Xiaoxian 《China Oil & Gas》 2025年第5期39-46,共8页
As the national carbon emission trading system extends to high energy-consuming industries,the petroleum exploration&development and refining&chemical engineering sectors face the dual challenges of rigid carb... As the national carbon emission trading system extends to high energy-consuming industries,the petroleum exploration&development and refining&chemical engineering sectors face the dual challenges of rigid carbon constraints and energy structure restructuring.This study innovatively proposes the“dual inflection point theory”,which reveals that the transformation window requires the industry to overcome composite pressures including regional energy imbalances,international carbon tariff barriers,and technological substitution bottlenecks.This paper constructs a five-in-one governance framework encompassing“policy coordination,market circulation,intelligent regulation,energy substitution,energy efficiency innovation”. 展开更多
关键词 carbon governance mechanisms rigid carbon constraints national carbon emission trading system petroleum industry energy structure restructuringthis regional energy imbalancesinternational transformation window Chinas carbon market
在线阅读 下载PDF
Enlightenment of geochemistry for ultra-deep petroleum accumulation:Coupling of secondary processes and filling events
5
作者 Rong-Zhen Qiao Mei-Jun Li +1 位作者 Dong-Lin Zhang Hong Xiao 《Petroleum Science》 2025年第4期1465-1484,共20页
Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration a... Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration and complex petroleum accumulation processes.A comprehensive suite of geochemical analyses,including molecular components,carbon isotope composition,homogenization temperature of saline inclusions,and burial-thermal history of single wells,was conducted to elucidate the genesis of these ancient reservoirs.Three petroleum filling events have been identified in the study area:Late Caledonian,Hercynian-Indosinian,and Himalayan,through analysis of homogenization temperatures of brine inclusions and burial-thermal histories.Additionally,the oil in the study area has undergone significant alteration processes such as biodegradation,thermal alteration,mixing,evaporative fractionation,and gas invasion.This study particularly emphasizes the influential role of Himalayan gas filling-induced evaporation fractionation and gas invasion in shaping the present petroleum phase distribution.Furthermore,analysis of light hydrocarbon and diamondoid parameters indicates the oil within the study area is at a high maturity stage,with equivalent vitrinite reflectance values ranging from 1.48%to 1.99%.Additionally,the analysis of light hydrocarbons,aromatics,and thiadiamondoids indicates that TSR should occur in reservoirs near the gypsum-salt layers in the Cambrian.The existence of the Cambrian petroleum system in the study area is strongly confirmed when considering the analysis results of natural gas type(oil cracking gas),evaporative fractionation,and gas invasion.Permian local thermal anomalies notably emerge as a significant factor contributing to the destruction of biomarkers in oil.For oil not subject to transient,abnormal thermal events,biomarker reliability extends to at least 190℃.In conclusion,examining the special formation mechanisms and conditions of various secondary processes can offer valuable insights for reconstructing the history of petroleum accumulation in ultradeep reservoirs.This research provides a scientific foundation for advancing our knowledge of petroleum systems and underscores the importance of hydrocarbon geochemistry in unraveling ultra-deep,complex geological phenomena. 展开更多
关键词 Ultra-deep GEOCHEMISTRY Secondary processes Igneous intrusions Petroleum accumulation
原文传递
Circle structure and orderly hydrocarbon accumulation of whole petroleum system in a continental rifted basin:A case study of Kong-2 Member in Cangdong Sag,Bohai Bay Basin,China
6
作者 ZHAO Xianzheng PU Xiugang +8 位作者 LUO Qun XIA Guochao GUI Shiqi DONG Xiongying SHI Zhannan HAN Wenzhong ZHANG Wei WANG Shichen WEN Fan 《Petroleum Exploration and Development》 2025年第3期587-599,共13页
Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and... Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag. 展开更多
关键词 circle structure whole petroleum system continental rifted basin Huanghua Depression Bohai Bay Basin Cangdong Sag Paleogene Kong-2 Member orderly hydrocarbon accumulation
在线阅读 下载PDF
Genesis and quantitative evaluation of deep petroleum phase diversity in the Tazhong area,Tarim Basin
7
作者 Jia-Kai Hou Zhi-Yao Zhang +6 位作者 Guang-You Zhu Jian-Fa Han Lin-Xian Chi Zi-Guang Zhu Hong-Bin Li Meng-Qi Li Rui-Lin Wang 《Petroleum Science》 2025年第6期2274-2289,共16页
The reservoired petroleum fluids in the deep Ordovician carbonates in the Tazhong area,Tarim Basin,exhibit diverse and intricate geochemical properties and petroleum phases.However,the study on the causal mechanisms f... The reservoired petroleum fluids in the deep Ordovician carbonates in the Tazhong area,Tarim Basin,exhibit diverse and intricate geochemical properties and petroleum phases.However,the study on the causal mechanisms for the genesis of co-existed complex petroleum phases and their distribution remains relatively limited.The quantitative assessment of changes in molecular compounds in petroleum pools influenced by secondary alteration to different degrees also needs further investigation.In this study,eight samples including condensate,volatile,and black oil from the Tazhong area were analyzed via GC×GC-TOFMS.The results reveal that condensate oil exhibits complete normal alkane distribution,with abundant diamantanes and organic sulfur compounds(OSCs),and features high density(>0.83 g/cm^(3)),elevated wax content(>20%),and remarkable gas washing loss.The condensate gas is characterized by highly mature oil-cracking gas with a heavy carbon isotope.Geological analysis indicates that the current Ordovician reservoir temperatures generally remain below 140℃,which is insufficient to induce in-situ oil cracking.Additionally,black oil pools are formed adjacent to the condensate gas pools,suggesting that the latter is not a result of in-situ oil cracking,but rather represents a secondary condensate gas pool formed through gas invasion of a pre-existed oil pool.Based on the loss of n-alkanes and variations in adamantanes(As)and diamantanes(Ds)content across different oil samples,the degree of gas invasion was assessed.We divided gas invasion intensity into strong(Q≥80%,As≥5000μg/g,Ds≥400μg/g),weak(20%≤Q<80%,3000μg/g≤As<5000μg/g,200μg/g≤Ds<400μg/g)and negligible(0≤Q<20%,As<3000μg/g,Ds<200μg/g).The multistage oil/gas charging events,specifically the sequence of“early oil and late gas”in the Ordovician from the Tazhong area,predominantly drives the phase evolution of reservoired petroleum.Furthermore,differential gas invasion alteration exacerbates the intricacy of petroleum phase distribution.Notably,gas washing processes significantly influence the disparate enrichment of diamondoids homologues in crude oil.Specifically,lower carbon number diamondoids are more abundant in condensate oil,while higher ones exhibit relatively increased abundance in black oil,potentially serving as a valuable quantitative assessment parameter.The findings in this study will provide guiding significance for the analysis and quantitative assessment of deep petroleum phase diversity.Additionally,this research will provide novel insights for comprehensively evaluating basins worldwide with complex petroleum phases distribution. 展开更多
关键词 CONDENSATE Gas invasion Petroleum phase state GC×GC-TOFMS Tarim Basin
原文传递
Natural gas types and coal-rock gas classification in the whole petroleum system of coal measures
8
作者 ZHANG Junfeng LI Guoxin +1 位作者 JIA Chengzao ZHAO Qun 《Petroleum Exploration and Development》 2025年第4期894-906,共13页
There are various types of natural gas resources in coal measures,making them major targets for natural gas exploration and development in China.In view of the particularity of the whole petroleum system of coal measu... There are various types of natural gas resources in coal measures,making them major targets for natural gas exploration and development in China.In view of the particularity of the whole petroleum system of coal measures and the reservoir-forming evolution of natural gas in coal,this study reveals the formation,enrichment characteristics and distribution laws of coal-rock gas by systematically reviewing the main types and geological characteristics of natural gas in the whole petroleum system of coal measures.First,natural gas in the whole petroleum system of coal measures is divided into two types,conventional gas and unconventional gas,according to its occurrence characteristics and accumulation mechanism,and into six types,distal detrital rock gas,special rock gas,distal/proximal tight sandstone gas,inner-source tight sandstone gas,shale gas,and coal-rock gas,according to its source and reservoir lithology.The natural gas present in coal-rock reservoirs is collectively referred to as coal-rock gas.Existing data indicate significant differences in the geological characteristics of coal-rock gas exploration and development between shallow and deep layers in the same area,with the transition depth boundary generally 1500-2000 m.Based on the current understanding of coal-rock gas and respecting the historical usage conventions of coalbed methane terminology,coal-rock gas can be divided into deep coal-rock gas and shallow coalbed methane according to burial depth.Second,according to the research concept of“full-process reservoir formation”in the theory of the whole petroleum system of coal measures,based on the formation and evolution of typical coal-rock gas reservoirs,coal-rock gas is further divided into four types:primary coal-rock gas,regenerated coal-rock gas,residual coal-rock gas,and bio coal-rock gas.The first two belong to deep coal-rock gas,while the latter two belong to shallow coal-rock gas.Third,research on the coal-rock gas reservoir formation and evolution shows that shallow coal-rock gas is mainly residual coal-rock gas or bio coal-rock gas formed after geological transformation of primary coal-rock gas,with the reservoir characteristics such as low reservoir pressure,low gas saturation,adsorbed gas in dominance,and gas production by drainage and depressurization,while deep coal-rock gas is mainly primary coal-rock gas and regenerated coal-rock gas,with the reservoir characteristics such as high reservoir pressure,high gas saturation,abundant free gas,and no or little water.In particular,the primary coal-rock gas is wide in distribution,large in resource quantity,and good in reservoir quality,making it the most favorable type of coal-rock gas for exploration and development. 展开更多
关键词 whole petroleum system of coal measures coal measure gas coalbed methane coal-rock gas coal-rock gas reservoir formation and evolution coal-rock gas classification
在线阅读 下载PDF
SGP-GCN:A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting
9
作者 Xin Liu Meng Sun +1 位作者 Bo Lin Shibo Gu 《Energy Engineering》 2025年第3期1053-1072,共20页
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas... Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells. 展开更多
关键词 Petroleum production forecast graph convolutional neural networks(GCNs) spatial-geological rela-tionships production clustering attention mechanism
在线阅读 下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:38
10
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin Deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
原文传递
Gas geochemistry evaluation of onshore Colombian basins:New insights for natural gas and liquified petroleum gas prospectivity
11
作者 César Mora Antonio Rangel +2 位作者 Mauricio A Bermúdez Gleubis Belén Silveira Moreno Claudia Posada 《Energy Geoscience》 2025年第2期1-10,共10页
This study examines the molecular and isotopic composition of 193 gas samples collected from oil and gas fields across Colombia's onshore basins with active hydrocarbon production.Comparative analyses were conduct... This study examines the molecular and isotopic composition of 193 gas samples collected from oil and gas fields across Colombia's onshore basins with active hydrocarbon production.Comparative analyses were conducted on both isotopic and molecular compositions across the Lower Magdalena Basin(LMB),Middle Magdalena Basin(MMB),Upper Magdalena Basin(UMB),Putumayo Cagu an Basin(PUTCAB),Catatumbo Basin(CATB),Eastern Llanos Basin(LLAB),and Eastern Cordillera Basin(ECB).The primary objectives were to classify the gases produced,characterize their origins,assess transformation processes such as biodegradation and migration,and analyze the statistical distribution patterns of their components.This geochemical characterization aims to support the discovery of new reserves for both natural gas(NG)and liquefied petroleum gas(LPG),given Colombia's potential risk of diminished energy selfsufficiency in gas resources.The basins under study produce dry gas,wet gas,and liquefied petroleum gas(LPG/C_(3+)),all associated with oil and gas fields of commercial hydrocarbon production.Notably,the LLAB contains the highest proportions of heavy isotopic carbon and C_(3+)(LPG)concentrations,whereas LMB is characterized by isotopically lighter methane,indicative of dry gas predominance.Results suggest a predominantly thermogenic origin for the gases studied,generated within the oil and gas windows,with several samples originating from secondary oil cracking,while some samples from LMB display a likely biogenic origin.Additionally,evidence of gas migration and biodegradation was observed in a significant subset of samples.The analysis of statistical distributions and compositional trends reveals a prevalent high methane content,with substantial C_(2)-C_(5)(C_(2+))gas concentrations across all basins studied.This composition underscores the potential for both natural gas(NG)and LPG production.The C_(3+)(LPG)content varies between 1%and 92%,with 35%of the samples containing less than 5%LPG.High original gas-in-place(OGIP)volumes and substantial LPG content in the Eastern Llanos foothills,encompassing fields such as Cusiana and Cupiagua,highlight the prospective potential of this region.Near-field exploration could further add reserves of both NG and LPG. 展开更多
关键词 Colombian basins Natural gas(NG) Liquefied petroleum gas(LPG) Prospectivity GEOCHEMISTRY
在线阅读 下载PDF
Whole petroleum system and main controlling factors of hydrocarbon accumulation in the Mesozoic of Ordos Basin,NW China
12
作者 DENG Xiuqin BAI Bin 《Petroleum Exploration and Development》 2025年第5期1150-1163,共14页
Based on the investigation of sedimentary filling characteristics and pool-forming factors of the Mesozoic in the Ordos Basin,the whole petroleum system in the Mesozoic is divided,the migration&accumulation charac... Based on the investigation of sedimentary filling characteristics and pool-forming factors of the Mesozoic in the Ordos Basin,the whole petroleum system in the Mesozoic is divided,the migration&accumulation characteristics and main controlling factors of conventional-unconventional hydrocarbons are analyzed,and the whole petroleum system model is established.First,the whole petroleum system developed in the Mesozoic takes the high-quality source rocks of the 7th member of the Triassic Yanchang Formation as the core and mainly consists of low-permeability and unconventional oil and gas reservoirs.It can be divided into four hydrocarbon accumulation domains,including intra-source retained hydrocarbon accumulation domain,near-source tight hydrocarbon accumulation domain,far-source conventional hydrocarbon accumulation domain and transitional hydrocarbon accumulation domain,which together form a continuous,symbiotic,and orderly accumulation entity wherein unconventional resources significantly outweigh conventional ones in proportion.Second,the spatial core area of sedimentary filling is the oil-rich core of the whole petroleum system.From the core to the periphery,the reservoir type evolves as shale oil→tight oil→conventional oil,the accumulation power is dominated by overpressure→buoyancy or overpressure and capillary force,the accumulation scale changes from extensive hundreds of millions of tons to a isolated hundreds of thousands-million of tons,and the gas-oil ratio and methane content decrease.Third,the sedimentary filling system provides the material basis and spatial framework for the whole petroleum system,the superimposed sand body,fault and unconformity constitute the dominant migration pathway of hydrocarbons in the far-source conventional hydrocarbon accumulation domain and the transitional hydrocarbon accumulation domain,the high-quality source rocks provide a solid resource basis for shale oil,and the micro-nano pore throat-fracture network constitute unconventional accumulation space.The hydrocarbon migration and accumulation process is mainly controlled by intense expulsion of hydrocarbon under overpressure in the pool-forming stage and the in-situ re-enrichment controlled by underpressure in post-pool-forming stage.The oil-gas enrichment and long-term preservation depends on the coordination among three factors(stable geological structure,multi-cycle sedimentation,and dual self-sealing).Fourth,the whole petroleum system model is defined as four domains,overpressure+underpressure drive,and dual self-sealing. 展开更多
关键词 whole petroleum system Ordos Basin MESOZOIC hydrocarbon accumulation domain continuous accumulation orderly accumulation accumulation power dual self-sealing preservation
在线阅读 下载PDF
Preferential petroleum migration pathways and prediction of petroleum occurrence in sedimentary basins:A review 被引量:8
13
作者 Hao Fang Zou Huayao Gong Zaisheng 《Petroleum Science》 SCIE CAS CSCD 2010年第1期2-9,共8页
The aim of this paper is to review the major points of contention concerning secondary petroleum migration, to discuss the nature and primary controls of the positions of petroleum migration pathways in sedimentary ba... The aim of this paper is to review the major points of contention concerning secondary petroleum migration, to discuss the nature and primary controls of the positions of petroleum migration pathways in sedimentary basins, and to illustrate the importance of preferential petroleum migration pathways for the formation of large oil/gas fields away from generative kitchens. There is competition between the driving force (buoyancy) and the restraining force (capillary pressure controlled largely by permeability contrast) in controlling the positions of petroleum migration pathways in heterogeneous carrier beds. At a large scale, there is a critical angle of dip of the carrier beds which determines the relative importance of structural morphology or permeability contrasts in controlling the positions of petroleum migration pathways in heterogeneous carrier beds. Maximum-driving-force-controlled migration pathways occur in carrier beds with an angle of dip greater than the critical dip and the positions of petroleum migration pathways are controlled mainly by the morphology of the sealing surfaces. Minimum-restraining-force-determined migration pathways occur in carrier beds with an angle of dip smaller than the critical angle where permeability contrasts would exert a more important influence on the positions of petroleum migration pathways. Preferential petroleum migration pathways (PPMP), defined as very restricted portions of carrier-beds that focus or concentrate petroleum from a large area of the generative kitchen, determine the distribution of oil and gas in sedimentary basins. The focusing of petroleum originating from a large area of the generative kitchens into restricted channels seems to be essential not only for long-range petroleum migration in hydrostatic conditions, but also for the formation of large oil or gas fields. Regions may miss out on petroleum migration because of its three-dimensional behavior, and two-dimensional migration modeling may be misleading in predicting petroleum occurrences in certain circumstances. 展开更多
关键词 Secondary petroleum migration heterogeneous carrier beds preferential petroleum migration pathways petroleum occurrence
原文传递
Theory, Technology and Practice of Unconventional Petroleum Geology 被引量:4
14
作者 Caineng Zou Zhi Yang +17 位作者 Guosheng Zhang Rukai Zhu Shizhen Tao Xuanjun Yuan Lianhua Hou Dazhong Dong Qiulin Guo Yan Song Qiquan Ran Zhen Qiu Songtao Wu Feng Ma Bin Bai Lan Wang Bo Xiong Songqi Pan Hanlin Liu Xiaoni Wang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第4期951-965,共15页
0 INTRODUCTION The breakthroughs in unconventional petroleum have a great impact on world petroleum industry and innovation in petroleum geology(Dou et al,2022;Jia,2017;Zou et al.,2015b,2014a;Yerkin,2012;Pollastro,200... 0 INTRODUCTION The breakthroughs in unconventional petroleum have a great impact on world petroleum industry and innovation in petroleum geology(Dou et al,2022;Jia,2017;Zou et al.,2015b,2014a;Yerkin,2012;Pollastro,2007;Schmoker,1995).The exploration and development evolution from conventional petroleum to unconventional petroleum and more and more frequent industrial activities of exploring petroleum inside sources kitchen have deepened theoretical understanding of unconventional petroleum geology and promoted technical research and development(Jia et al.,2021,2017;Jin et al.,2021;Zhao W Z et al.,2020;Ma Y S et al.,2018,2012;Zou et al.,2018b,2016,2009;Dai et al.,2012).We have introduced and extended the theory of continuous hydrocarbon accumulation since 2008 and published several papers/books(in Chinese and English)with respect to unconventional petroleum geology since 2009,basically forming the theoretical framework for this discipline(Yang et al.,2022a,2021a,2019a,,2015a;Zou et al.,2019c,2017b,2014a,,2013a).In this paper,we present the background of unconventional petroleum geology,review the latest theoretical and technological progress in unconventional petroleum geology,introduce relevant thinking and practices in China,and explore the pathway of unconventional petroleum revolution and multi-energy coordinated development in super energy basins,hopefully to promote the unconventional petroleum geology and industry development. 展开更多
关键词 unconventional petroleum geology conventional-unconventional petroleum geology source rock oil and gas oil and gas in source rock stratum fine-grained sediment microscale to nanoscale pore throat continuous hydrocarbon accumulation artificial hydrocarbon reservoir exploring petroleum inside source kitchen shale revolution coal rock revolution chemical transformation within source super energy basin.
原文传递
Petroleum Migration Characteristics in the Northeastern Part of the Baiyun Depression,Pearl River Mouth Basin,South China Sea 被引量:3
15
作者 ZENG Jianhui WANG Chen +5 位作者 GUO Shuai YU Yixin ZHANG Zhongtao YANG Haizhang ZHAO Zhao SUN Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期208-231,共24页
This paper investigates the origin and migration characteristics of petroleum in the northeastern part of the Baiyun Depression,Pearl River Mouth Basin(PRMB).The discovered petroleum in the study area is mainly locate... This paper investigates the origin and migration characteristics of petroleum in the northeastern part of the Baiyun Depression,Pearl River Mouth Basin(PRMB).The discovered petroleum in the study area is mainly located in the Lower Zhujiang Member(N_(1)z^(2))and mainly originated from the Enping Formation source rocks in the eastern sag.Active faults(vertical migration)and N_(1)z^(2)sandstones(lateral migration)acted as the petroleum migration systems.The fault activities in the Dongsha event controlled the episodic petroleum migration.Fractures in the fault zones provided effective conduits,and overpressure was the driving force.The vertical migration could not cross the fault zones laterally.The petroleum injection areas in the carrier beds were the contact zones of petroleum-migration faults and carrier beds.The lateral migration was steady-state migration,and buoyancy was the driving force.The migration pathways in the carrier beds were controlled by the structural morphology.Secondary petroleum migration in the study area could be divided into two parts:vertical migration along the fractures in the fault zones and lateral migration through preferential petroleum migration pathways(PPMPs)in the carrier beds.The petroleum migration behaviors,including migrating direction,driving force,and migration pattern,in the faults and sandstone carrier beds were quite different.This study provides a typical example for comprehending secondary migration processes and has great importance for determining future exploration targets in the deep-water area of the PRMB. 展开更多
关键词 secondary petroleum migration episodic petroleum migration preferential petroleum migration pathways(PPMPs) Baiyun Depression Pearl River Mouth Basin
在线阅读 下载PDF
Basic principles of the whole petroleum system 被引量:1
16
作者 JIA Chengzao PANG Xiongqi SONG Yan 《Petroleum Exploration and Development》 SCIE 2024年第4期780-794,共15页
This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation ... This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system.It delineates the geological model,flow model,and production mechanism of shale and tight reservoirs,and proposes future research orientations.The main structure of the whole petroleum system includes three fluid dynamic fields,three types of oil and gas reservoirs/resources,and two types of reservoir-forming processes.Conventional oil/gas,tight oil/gas,and shale oil/gas are orderly in generation time and spatial distribution,and sequentially rational in genetic mechanism,showing the pattern of sequential accumulation.The whole petroleum system involves two categories of hydrocarbon accumulation models:hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation.The accumulation of unconventional oil/gas is self-containment,which is microscopically driven by the intermolecular force(van der Waals force).The unconventional oil/gas production has proved that the geological model,flow model,and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study.Shale oil/gas must be the most important resource replacement for oil and gas resources of China.Future research efforts include:(1)the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins;(2)flow mechanisms in migration,accumulation,and production of shale oil/gas and tight oil/gas;(3)geological characteristics and enrichment of deep and ultra-deep shale oil/gas,tight oil/gas and coalbed methane;(4)resource evaluation and new generation of basin simulation technology of the whole petroleum system;(5)research on earth system-earth organic rock and fossil fuel system-whole petroleum system. 展开更多
关键词 whole petroleum system theory structure of whole petroleum system sequential accumulation pattern hydrocarbon accumulation model of the whole petroleum system self-containment hydrocarbon accumulation mechanism geological model and flow model of shale and tight oil/gas
在线阅读 下载PDF
New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression,Tarim Basin,NW China 被引量:3
17
作者 WANG Qinghua YANG Haijun YANG Wei 《Petroleum Exploration and Development》 2025年第1期79-94,共16页
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es... Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment. 展开更多
关键词 Tarim Basin Kuqa Depression ultra-deep layers clastic rock multi-layer structural deformation multilayered migration and accumulation new three-dimensional accumulation model
在线阅读 下载PDF
Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs 被引量:50
18
作者 Cheng-Zao Jia Xiong-Qi Pang Yan Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期1-19,共19页
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some... The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside. 展开更多
关键词 Conventional and unconventional oil and gas Petroleum system Whole petroleum system Hydrocarbon reservoirs ordered distribution model Fossil energy
原文传递
Source and exploration potential of the ultra-deep Cambrian petroleum in Well XT-1,Tarim Basin,NW China
19
作者 SU Jin WANG Xiaomei +11 位作者 ZHANG Chengdong YANG Xianzhang LI Jin YANG Yupeng ZHANG Haizu FANG Yu YANG Chunlong FANG Chenchen WANG Yalong WEI Caiyun WENG Na ZHANG Shuichang 《Petroleum Exploration and Development》 2025年第2期391-407,共17页
The ultra-deep(deeper than 8000 m)petroleum in the platform-basin zones of the Tarim Basin has been found mainly in the Lower Paleozoic reservoirs located to the east of the strike-slip fault F5 in the north depressio... The ultra-deep(deeper than 8000 m)petroleum in the platform-basin zones of the Tarim Basin has been found mainly in the Lower Paleozoic reservoirs located to the east of the strike-slip fault F5 in the north depression.However,the source and exploration potential of the ultra-deep petroleum in the Cambrian on the west of F5 are still unclear.Through the analysis of lithofacies and biomarkers,it is revealed that there are at least three kinds of isochronous source rocks(SRs)in the Cambrian Newfoundland Series in Tarim Basin,which were deposited in three sedimentary environments,i.e.sulfide slope,deep-water shelf and restricted bay.In 2024,Well XT-1 in the western part of northern Tarim Basin has yielded a high production of condensate from the Cambrian.In the produced oil,entire aryl-isoprenoid alkane biomarkers were detected,but triaromatic dinosterane was absent.This finding is well consistent with the geochemical characteristics of the Newfoundland sulfidized slope SRs represented by those in wells LT-1 and QT-1,suggesting that the Newfoundland SRs are the main source of the Cambrian petroleum discovered in Well XT-1.Cambrian crude oil of Well XT-1 also presents the predominance of C29 steranes and is rich in long-chain tricyclic terpanes(up to C39),which can be the indicators for effectively distinguishing lithofacies such as siliceous mudstone and carbonate rock.Combined with the analysis of hydrocarbon accumulation in respect of conduction systems including thrust fault and strike-slip fault,it is found that the area to the west of F5 is possible to receive effective supply of hydrocarbons from the Cambrian Newfoundland SRs in Manxi hydrocarbon-generation center.This finding suggests that the area to the west of F5 will be a new target of exploration in the Cambrian ultra-deep structural-lithologic reservoirs in the Tarim Basin,in addition to the Cambrian ultra-deep platform-margin facies-controlled reservoirs in the eastern part of the basin. 展开更多
关键词 CAMBRIAN Well XT-1 ultra-deep molecular fossil aryl-isoprenoid alkane triaromatic steroid source rock strike-slip fault Tarim Basin
在线阅读 下载PDF
Development of Petroleum Geology in China:Discussion on Continuous Petroleum Accumulation 被引量:12
20
作者 邹才能 陶士振 +9 位作者 杨智 侯连华 袁选俊 朱如凯 贾进华 吴松涛 公言杰 高晓辉 王岚 汪洁 《Journal of Earth Science》 SCIE CAS CSCD 2013年第5期796-803,共8页
Petroleum exploration targets are extending gradually from the single conventional trap reservoirs to the large-scale unconventional continuous accumulations. Oil and gas reservoirs have been divided into two types ba... Petroleum exploration targets are extending gradually from the single conventional trap reservoirs to the large-scale unconventional continuous accumulations. Oil and gas reservoirs have been divided into two types based on the trapping mechanism and distribution of oil and gas: conven- tional single-trap reservoirs, such as the Daqing oil field in Songliao Basin and the Kela-2 gas field in Tarim Basin; and unconventional continuous petroleum accumulation, such as Upper Paleozoic tight gas and Mesozoic tight oil in Ordos Basin, and Upper Triassic tight gas in Sichuan Basin. Two typical geologic characteristics of continuous petroleum accumulation involve: (1) coexisting source and reser- voir, petroleum pervasive throughout a large area tight reservoirs, and no obvious traps or well-defined water-oil and gas contracts; (2) non-buoyancy accumulation, continuous petroleum charge, and no sig- nificant influence by buoyancy. Continuous petroleum accumulation generally have nm-scale pore throats, and the diameters range of 10-500 nm. The geometry and connectivity of these pore throats has significant impact on the migration and distribution of oil and gas in continuous petroleum accu- mulation. China has numerous continuous petroleum accumulation containing various petroleum de- posits, and the exploration of continuous resources is very promising. Unconventional petroleum geol- ogy will become an important new subject in petroleum geology in future, and the nano-technology will function greatly on research, exploration and development of the hydrocarbon accumulation in nano-pore-throats. 展开更多
关键词 continuous petroleum accumulation unconventional petroleum geology nano-pore- throat tight gas tight oil.
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部