Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays...Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.展开更多
Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes m_(n)(^(k))for k>2.In this follow-up work,we investigate the poles of m_(n)...Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes m_(n)(^(k))for k>2.In this follow-up work,we investigate the poles of m_(n)(^(k))from the perspective of such arrays.For general k,we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles,whose number is drastically less than the number of the full arrays.As an example,we first provide all the poles for the cases(k,n)=(3,7),(3,8),(3,9),(3,10),(4,8)and(4,9)in terms of their planar arrays of degenerate Feynman diagrams.We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases.Along the way,we implement hard and soft kinematical limits,which provide a map between the poles in kinematic space and their combinatoric arrays.We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in(k,n)and(n-k,n).We also outline the relation to boundary maps of the hypersimplex Δ_(k,n) and rays in the tropical Grassmannian Tr(k,n).展开更多
Recently,planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k=3 biadjoint amplitudes.Planar collections are o...Recently,planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k=3 biadjoint amplitudes.Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition.In this work,we introduce planar matrices of Feynman diagrams as the objects that compute k=4 biadjoint amplitudes.These are symmetric matrices of metric trees satisfying compatibility conditions.We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections.As applications of the first,we find all 693,13612 and 346710 collections for(k,n)=(3,7),(3,8)and(3,9),respectively.As applications of the second kind,we find all90608 and 30659424 planar matrices that compute(k,n)=(4,8)and(4,9)biadjoint amplitudes,respectively.As an example of the evaluation of matrices of Feynman diagrams,we present the complete form of the(4,8)and(4,9)biadjoint amplitudes.We also start a study of higher-dimensional arrays of Feynman diagrams,including the combinatorial version of the duality between(k,n)and(n-k,n)objects.展开更多
Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests t...Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.展开更多
The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently.The standard model is defined perturbatively and describes all elementary particles(ex...The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently.The standard model is defined perturbatively and describes all elementary particles(except gravitons)very well.However,for a long time,we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory.Here we propose a way to give a modified standard model(with 48 two-component Weyl fermions)a non-perturbative definition by embedding the modified standard model into an SO(10)chiral gauge theory.We show that the SO(10)chiral gauge theory can be put on a lattice(a 3D spatial lattice with a continuous time)if we allow fermions to interact.Such a non-perturbatively defined standard model is a Hamiltonian quantum theory with a finite-dimensional Hilbert space for a finite space volume.More generally,using the defining connection between gauge anomalies and the symmetry-protected topological orders,one can show that any truly anomaly-free chiral gauge theory can be non-perturbatively defined by putting it on a lattice in the same dimension.展开更多
Motivated by recent work,nonmonotonic behaviors of photon sphere radius can be used to reflect black hole phase transition for Reissner–Nordstr?m–AdS(RN–AdS)black holes,we study the case of five-dimensional charged...Motivated by recent work,nonmonotonic behaviors of photon sphere radius can be used to reflect black hole phase transition for Reissner–Nordstr?m–AdS(RN–AdS)black holes,we study the case of five-dimensional charged Gauss–Bonnet–AdS black holes in the reduced parameter space.We find that the nonmonotonic behaviors of photon sphere radius still exist.Using the coexistence line calculated from P–V plane,we capture the photon sphere radius of saturated small and large black holes(the boundary of the coexistence phase),then illustrate the reduced coexistence region.The results show that,reduced coexistence region decreases with charge Q but increases with Gauss–Bonnet coefficientα.When the charge vanishes,reduced coexistence region does not vary with Gauss–Bonnet coefficientαany more.In this case,the Gauss–Bonnet coefficientαplays the same role as the charge of five-dimensional RN–AdS black holes.Also,the situation of higher dimension is studied in the end.展开更多
Quasi-periodic oscillation(QPO)signals are discovered in some fast radio bursts(FRBs)such as FRB 20191221A,as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154.We revisit the intermediatef...Quasi-periodic oscillation(QPO)signals are discovered in some fast radio bursts(FRBs)such as FRB 20191221A,as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154.We revisit the intermediatefield FRB model where the radio waves are generated as fast-magnetosonic waves through magnetic reconnection near the light cylinder.The current sheet in the magnetar wind is compressed by a low frequency pulse emitted from the inner magnetosphere to trigger magnetic reconnection.By incorporating the wave dynamics of the magnetosphere,we demonstrate how the FRB frequency,the single pulse width,and luminosity are determined by the period,magnetic field,QPO frequency and quake energetics of the magnetar.We find that this model can naturally and self-consistently interpret the X-ray/radio event from SGR 1935+2154 and the QPO in FRB20191221A.It can also explain the observed wide energy range of repeating FRBs in a narrow bandwidth.展开更多
We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstr...We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.展开更多
Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the new generation of Chinese r...Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the new generation of Chinese radio telescopes through a blind search of 21-cm absorption systems. We forecast the capabilities of surveys of 21-cm absorption systems by two representative radio telescopes in China - the Five-hundred-meter Aperture Spherical radio Telescope (FAST) and Tianlai 21-cm cosmology experiment (Tianlai). Facilitated by either the high sensitivity (FAST) or wide field of view (Tianlai) of these telescopes, more than a thousand 21-cm absorption systems can be discovered in a few years, representing orders of magnitude improvement over the cumulative discoveries in the past half a century.展开更多
Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal l...Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process.We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem.We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes.We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run,named Tian Nu,which uses 86%of the machine(13 824 compute nodes).With a total of 2.97 trillion particles,Tian Nu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.We finish with a discussion of the unanticipated computational challenges that were encountered during the Tian Nu runtime.展开更多
Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity.Moreover, it i...Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity.Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices.It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources.Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons.In particular, we show that so-called Sylvester interferometers are near-optimal for this task.By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required.Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3 D integrated circuits in the single-and multiple-source cases.We then discuss the extension of this approach to a larger number of photons and modes.These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.展开更多
Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum com...Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.展开更多
The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection is convex in R3. The boundary of may exhibit nontrivial geometry, in particular ruled surfaces. T...The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection is convex in R3. The boundary of may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti's theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range II of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that a ruled surface emerges naturally when taking a convex hull of ∏. We show that, a ruled surface on sitting in ∏ has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of , with two boundary pieces of symmetry breaking origin separated by two gapless lines.展开更多
The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper...The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper, we study the physical origins of these ruled surfaces for bosonic systems. The emergence of ruled surfaces was recently proposed as signatures of symmetry- breaking phase. We show that, apart from being signatures of symmetry-brealdng, ruled surfaces can also be the consequence of gapless quantum systems by demonstrating an explicit example in terms of a two-mode Ising model. Our analysis was largely simplified by the quantum de Finetti's theorem--in the limit of large system size, these RDMs are the convex set of all the symmetric separable states. To distinguish ruled surfaces originated from gapless systems from those caused by symmetry- breaking, we propose to use the finite size scaling method for the corresponding geometry. This method is then applied to the two-mode XY model, successfully identifying a ruled surface as the consequence of gapless systems.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1404204 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12274086, 11534001 and 11925402)+5 种基金funding from the National Science Foundation of China (Grant Nos. 12274046, 11874094, 12147102, and 12347101)Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-JQX0018)the Fundamental Research Funds for the Central Universities (Grant No. 2021CDJZYJH-003)Xiaomi Foundation/Xiaomi Young Talents Programthe supports of the start-up funding of Westlake Universitysupport from the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grants。
文摘Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.
基金supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canadaby the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade
文摘Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes m_(n)(^(k))for k>2.In this follow-up work,we investigate the poles of m_(n)(^(k))from the perspective of such arrays.For general k,we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles,whose number is drastically less than the number of the full arrays.As an example,we first provide all the poles for the cases(k,n)=(3,7),(3,8),(3,9),(3,10),(4,8)and(4,9)in terms of their planar arrays of degenerate Feynman diagrams.We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases.Along the way,we implement hard and soft kinematical limits,which provide a map between the poles in kinematic space and their combinatoric arrays.We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in(k,n)and(n-k,n).We also outline the relation to boundary maps of the hypersimplex Δ_(k,n) and rays in the tropical Grassmannian Tr(k,n).
基金supported in part by the Government of Canada through the Department of Innovation,Science and Economic Development Canadaby the Province of Ontario through the Ministry of Economic Development,Job Creation and Trade。
文摘Recently,planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k=3 biadjoint amplitudes.Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition.In this work,we introduce planar matrices of Feynman diagrams as the objects that compute k=4 biadjoint amplitudes.These are symmetric matrices of metric trees satisfying compatibility conditions.We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections.As applications of the first,we find all 693,13612 and 346710 collections for(k,n)=(3,7),(3,8)and(3,9),respectively.As applications of the second kind,we find all90608 and 30659424 planar matrices that compute(k,n)=(4,8)and(4,9)biadjoint amplitudes,respectively.As an example of the evaluation of matrices of Feynman diagrams,we present the complete form of the(4,8)and(4,9)biadjoint amplitudes.We also start a study of higher-dimensional arrays of Feynman diagrams,including the combinatorial version of the duality between(k,n)and(n-k,n)objects.
基金support from the John Templeton Foundation,The Quantum Information Structure of Spacetime(QISS)Project(qiss.fr)(the opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the John Templeton Foundation)(Grant No.61466)and QISS2(Grant No.62312).
文摘Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.
基金This research is supported by NSF Grant No.DMR-1005541,NSFC 11074140,and NSFC 11274192。
文摘The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently.The standard model is defined perturbatively and describes all elementary particles(except gravitons)very well.However,for a long time,we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory.Here we propose a way to give a modified standard model(with 48 two-component Weyl fermions)a non-perturbative definition by embedding the modified standard model into an SO(10)chiral gauge theory.We show that the SO(10)chiral gauge theory can be put on a lattice(a 3D spatial lattice with a continuous time)if we allow fermions to interact.Such a non-perturbatively defined standard model is a Hamiltonian quantum theory with a finite-dimensional Hilbert space for a finite space volume.More generally,using the defining connection between gauge anomalies and the symmetry-protected topological orders,one can show that any truly anomaly-free chiral gauge theory can be non-perturbatively defined by putting it on a lattice in the same dimension.
基金supported by the National Natural Science Foundation of China(Grant No.11235003)Overseas Study Fellowship Project from Physics Department of Beijing Normal University+1 种基金supported in part by the Government of Canada through the Department of Innovation,Science and Economic Developmentby the Province of Ontario through the Ministry of Research,Innovation and Science。
文摘Motivated by recent work,nonmonotonic behaviors of photon sphere radius can be used to reflect black hole phase transition for Reissner–Nordstr?m–AdS(RN–AdS)black holes,we study the case of five-dimensional charged Gauss–Bonnet–AdS black holes in the reduced parameter space.We find that the nonmonotonic behaviors of photon sphere radius still exist.Using the coexistence line calculated from P–V plane,we capture the photon sphere radius of saturated small and large black holes(the boundary of the coexistence phase),then illustrate the reduced coexistence region.The results show that,reduced coexistence region decreases with charge Q but increases with Gauss–Bonnet coefficientα.When the charge vanishes,reduced coexistence region does not vary with Gauss–Bonnet coefficientαany more.In this case,the Gauss–Bonnet coefficientαplays the same role as the charge of five-dimensional RN–AdS black holes.Also,the situation of higher dimension is studied in the end.
基金J.S.W.acknowledges the support from the Alexander von Humboldt FoundationX.L.is supported by NSERC,funding reference#CITA 490888–16+7 种基金the Jeffrey L.Bishop FellowshipResearch at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation,Science and Economic Development Canadathe Province of Ontario through the Ministry of Colleges and UniversitiesZ.G.D.is supported by the National Key Research and Development Program of China(Grant No.2017YFA0402600)the National SKA Program of China(Grant No.2020SKA0120300)the National Natural Science Foundation of China(Grant No.11833003)X.F.W.is supported by the National Natural Science Foundation of China(Grant Nos.11725314,12041306)the National SKA Program of China(2022SKA0130101)。
文摘Quasi-periodic oscillation(QPO)signals are discovered in some fast radio bursts(FRBs)such as FRB 20191221A,as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154.We revisit the intermediatefield FRB model where the radio waves are generated as fast-magnetosonic waves through magnetic reconnection near the light cylinder.The current sheet in the magnetar wind is compressed by a low frequency pulse emitted from the inner magnetosphere to trigger magnetic reconnection.By incorporating the wave dynamics of the magnetosphere,we demonstrate how the FRB frequency,the single pulse width,and luminosity are determined by the period,magnetic field,QPO frequency and quake energetics of the magnetar.We find that this model can naturally and self-consistently interpret the X-ray/radio event from SGR 1935+2154 and the QPO in FRB20191221A.It can also explain the observed wide energy range of repeating FRBs in a narrow bandwidth.
基金the support from the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01supported by the World Premier International Research Center Initiative(WPI),MEXT,Japan+12 种基金the Ontario Research Fund:Research Excellence Program(ORF-RE)Natural Sciences and Engineering Research Council of Canada(NSERC)[funding reference number RGPIN-2019-067,CRD 523638-201,555585-20]Canadian Institute for Advanced Research(CIFAR)Canadian Foundation for Innovation(CFI)the National Natural Science Foundation of China(NSFC,Grant No.11929301)Simons FoundationThoth Technology IncAlexander von Humboldt Foundationthe Niagara supercomputers at the SciNet HPC Consortiumthe Canada Foundation for Innovationthe Government of OntarioOntario Research Fund—Research Excellencethe University of Toronto。
文摘We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11573006 and 11528306)General Financial (Grant No. 2015M570884) and Special Financial Grant (No. 2016T90009) from the China Postdoctoral Science Foundation+3 种基金support of the National Science and Engineering Research Council of Canadasupport from the FAST fellowship program administered by the Astronomical Mega-science center of the Chinese Academy of Sciencespartially supported by the International Partnership Program of CAS, Grant No. 114A11KYSB20160008CAS Interdisciplinary Innovation Team program
文摘Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the new generation of Chinese radio telescopes through a blind search of 21-cm absorption systems. We forecast the capabilities of surveys of 21-cm absorption systems by two representative radio telescopes in China - the Five-hundred-meter Aperture Spherical radio Telescope (FAST) and Tianlai 21-cm cosmology experiment (Tianlai). Facilitated by either the high sensitivity (FAST) or wide field of view (Tianlai) of these telescopes, more than a thousand 21-cm absorption systems can be discovered in a few years, representing orders of magnitude improvement over the cumulative discoveries in the past half a century.
基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)supported under the U.S.Department of Energy contract DE-AC02-06CH11357+12 种基金General Financial Grant No.2015M570884Special Financial Grant No.2016T90009 from the China Postdoctoral Science Foundationsupport from the European Commission under a Marie-Sklodwoska-Curie European Fellowship(EU project 656869)support from Mo ST 863 program 2012AA121701NSFC grant 11373030CAS grant QYZDJ-SSW-SLH017supported by the National Natural Science Foundation of China(Grant Nos.11573006,11528306,10473002 and 11135009)the National Basic Research Program of China(973 program)under grant No.2012CB821804the Fundamental Research Funds for the Central UniversitiesSciNet is funded by:the Canada Foundation for Innovation under the auspices of Compute Canadathe Government of Ontariothe Ontario Research Fund Research Excellencethe University of Toronto
文摘Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process.We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem.We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes.We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run,named Tian Nu,which uses 86%of the machine(13 824 compute nodes).With a total of 2.97 trillion particles,Tian Nu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.We finish with a discussion of the unanticipated computational challenges that were encountered during the Tian Nu runtime.
基金supported by ERC-Starting Grant 3D-QUEST (3DQuantum Integrated Optical Simulation Grant agreement No.307783)+3 种基金H2020-FETPROACT-2014 Grant QUCHIP (Quantum Simulation on a Photonic Chip Grant agreement No.641039)Brazilian National Institute for Science and Technology of Quantum Information (INCT-IQ/CNPq)in part by Perimeter Institute for Theoretical Physics
文摘Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity.Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices.It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources.Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons.In particular, we show that so-called Sylvester interferometers are near-optimal for this task.By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required.Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3 D integrated circuits in the single-and multiple-source cases.We then discuss the extension of this approach to a larger number of photons and modes.These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.
基金supported by the National Program on Key Basic Research Project(Grant Nos.2013CB921800,and 2014CB848700)the National Science Fund for Distinguished Young Scholars(Grant No.11425523)+4 种基金the National Natural Science Foundation of China(Grant Nos.11805008,11227901,11734002,11374032,and 91021005)the Strategic Priority Research Program(B)of the CAS(Grant No.XDB01030400)the Research Fund for the Doctoral Program of Higher Education of China(RFDPHEC)(Grant No.20113402110044)the support from the John Templeton foundation(Grant No.39901)supported in part by Perimeter Institute for Theoretical Physics
文摘Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
基金supported by the Natural Sciences and Engineering Research Council of Canada,Canadian Institute for Advanced Research,Perimeter Institute for Theoretical PhysicsResearch at Perimeter Institute was supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development&Innovation
文摘The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection is convex in R3. The boundary of may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti's theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range II of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that a ruled surface emerges naturally when taking a convex hull of ∏. We show that, a ruled surface on sitting in ∏ has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of , with two boundary pieces of symmetry breaking origin separated by two gapless lines.
基金supported by the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the Perimeter Institute for Theoretical PhysicsResearch at Perimeter Institute was supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation+1 种基金Zheng-Xin Liu was supported by the Research Funds of Remin University of China (Grant No. 15XNFL19)the National Natural Science Foundation of China (Grant No. 11574392)
文摘The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper, we study the physical origins of these ruled surfaces for bosonic systems. The emergence of ruled surfaces was recently proposed as signatures of symmetry- breaking phase. We show that, apart from being signatures of symmetry-brealdng, ruled surfaces can also be the consequence of gapless quantum systems by demonstrating an explicit example in terms of a two-mode Ising model. Our analysis was largely simplified by the quantum de Finetti's theorem--in the limit of large system size, these RDMs are the convex set of all the symmetric separable states. To distinguish ruled surfaces originated from gapless systems from those caused by symmetry- breaking, we propose to use the finite size scaling method for the corresponding geometry. This method is then applied to the two-mode XY model, successfully identifying a ruled surface as the consequence of gapless systems.