We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo ...We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.展开更多
We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic ...We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.展开更多
Background:Ischemic preconditioning(IPC)is purported to have beneficial effects on athletic performance,although findings are inconsistent,with some studies reporting placebo effects.The majority of studies have inves...Background:Ischemic preconditioning(IPC)is purported to have beneficial effects on athletic performance,although findings are inconsistent,with some studies reporting placebo effects.The majority of studies have investigated IPC alongside a placebo condition,but without a control condition that was devoid of experimental manipulation,thereby limiting accurate determination of the IPC effects.Therefore,the aims of this study were to assess the impact of the IPC intervention,compared to both placebo and no intervention,on exercise capacity and athletic performance.Methods:A systematic search of PubMed,Embase,SPORTDiscus,Cochrane Library,and Latin American and Caribbean Health Sciences Literature(LILACS)covering records from their inception until July 2023 was conducted.To qualify for inclusion,studies had to apply IPC as an acute intervention,comparing it with placebo and/or control conditions.Outcomes of interest were performance(force,number of repetitions,power,time to exhaustion,and time trial performance),physiological measurements(maximum oxygen consumption,and heart rate),or perceptual measurements(RPE).For each outcome measure,we conducted 3 independent meta-analyses(IPC vs.placebo,IPC vs.control,placebo vs.control)using an inverse-variance random-effects model.The between-treatment effects were quantified by the standardized mean difference(SMD),accompanied by their respective 95%confidence intervals.Additionally,we employed the Grading of Recommendations,Assessment,Development and Evaluation(GRADE)approach to assess the level of certainty in the evidence.Results:Seventy-nine studies were included in the quantitative analysis.Overall,IPC demonstrates a comparable effect to the placebo condition(using a low-pressure tourniquet),irrespective of the subjects'training level(all outcomes presenting p>0.05),except for the outcome of time to exhaustion,which exhibits a small magnitude effect(SMD=0.37;p=0.002).Additionally,the placebo exhibited effects notably greater than the control condition(outcome:number of repetitions;SMD=0.45;p=0.03),suggesting a potential influence of participants'cognitive perception on the outcomes.However,the evidence is of moderate to low certainty,regardless of the comparison or outcome.Conclusion:IPC has significant effects compared to the control intervention,but it did not surpass the placebo condition.Its administration might be influenced by the cognitive perception of the receiving subject,and the efficacy of IPC as an ergogenic strategy for enhancing exercise capacity and athletic performance remains questionable.展开更多
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-pli...The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.展开更多
Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening ...Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.展开更多
With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance elec...With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.展开更多
Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread appli...Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread applications are hindered by low ionic conductivity at room temperature and lithium dendrite growth.Herein,we report a novel solid-state composite membrane electrolyte design that combines the vertically aligned channel structure and copolymer with a radial gradient composition.Within the vertically aligned channels,the composition of poly(vinyl ethylene carbonate-co-poly(ethylene glycol)diacrylate)(P(VEC-PEGDA)varies in a gradient along the radial direction:from the center to the wall of vertically aligned channels,the proportion of vinyl ethylene carbonate(VEC)in the copolymer decreases,while the proportion of poly(ethylene glycol)diacrylate(PEGDA)increases accordingly.It can be functionally divided into a mechanical-reinforcement layer and a fast-ion-conducting layer.The resulting solid-state composite membrane electrolyte achieves a high critical current density of 1.2 mA cm^(-2)and high ionic conductivity of 2.03 mS cm^(-1)at room temperature.Employing this composite membrane electrolyte,a Li//Li symmetric cell exhibits stable cycling for over 1850 h at 0.2 m A cm^(-2)/0.2 m A h cm^(-2),and a Li//LiFePO4(LFP)battery maintains 77.3% capacity retention at 2 C after 300 cycles.Our work provides insight into the rational design of safer and more efficient solidstate batteries through electrolyte structural engineering.展开更多
The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity...The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity and poor oxidative stability.To address these issues,we introduce a novel in-situ ionization strategy using radical polymer poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl acrylate)(PTPA)to enhance ionic conductivity and achieve a high electrochemical stability window in PEO-based electrolyte.Density functional theory(DFT)calculations and molecular dynamics(MD)simulations reveal that the in-situ generation of PTPA+from PTPA within the battery,not only exceptionally decreases the low Highest Occupied Molecular Orbital(HOMO)energy level,but also exhibits a robust anchoring effect on TFSI-anions in the electrolyte,which boosts Li^(+) migration and enables dense Li deposition behavior.As a result,the PEO/10 wt%PTPA/LiTFSI electrolyte demonstrates remarkable oxidative stability up to 5 V and a high Li^(+)transference number(0.57).Li-Li symmetric cells maintain stability over 1000 h at 0.2 mA cm^(-2),and LiFePO_(4)(LFP)//Li battery also presents an enduring cyclic performance over 500 cycles with a remarkable high-capacity retention of 91.8% at 0.5C.Impressively,by coupling with a high-voltage LiCoO_(2)(LCO)cathode(cut-off voltage 4.6 V),the assembled ASSLBs reach a capacity retention of 87.1% after 500 cycles at 1C.Our study explores the mechanism of radical polymer in PEO-based electrolyte and provides a fire-new strategy for construction of high-performance and multifunctional ASSLBs.展开更多
Purpose We aimed to determine:(a)the chronic effects of interval training(IT)combined with blood flow restriction(BFR)on physiological adaptations(aerobic/anaerobic capacity and muscle responses)and performance enhanc...Purpose We aimed to determine:(a)the chronic effects of interval training(IT)combined with blood flow restriction(BFR)on physiological adaptations(aerobic/anaerobic capacity and muscle responses)and performance enhancement(endurance and sprints),and(b)the influence of participant characteristics and intervention protocols on these effects.Methods Searches were conducted in PubMed,Web of Science(Core Collection),Cochrane Library(Embase,ClinicalTrials.gov,and International Clinical Trials Registry Platform),and Chinese National Knowledge Infrastructure on April 2,with updates on October 17,2024.Pooled effects for each outcome were summarized using Hedge's g(g)through meta-analysis-based random effects models,and subgroup and regression analyses were used to explore moderators.Results A total of 24 studies with 621 participants were included.IT combined with BFR(IT+BFR)significantly improved maximal oxygen uptake(VO2_(max))(g=0.63,I^(2)=63%),mean power during the Wingate 30-s test(g=0.70,I^(2)=47%),muscle strength(g=0.88,I^(2)=64%),muscle endurance(g=0.43,I^(2)=0%),time to fatigue(g=1.26,I^(2)=86%),and maximal aerobic speed(g=0.74,I^(2)=0%)compared to IT alone.Subgroup analysis indicated that participant characteristics including training status,IT intensity,and IT modes significantly moderated VO2_(max)(subgroup differences:p<0.05).Specifically,IT+BFR showed significantly superior improvements in VO2_(max)compared to IT alone in trained individuals(g=0.76)at supra-maximal intensity(g=1.29)and moderate intensity(g=1.08)as well as in walking(g=1.64)and running(g=0.63)modes.Meta-regression analysis showed cuff width(β=0.14)was significantly associated with VO2_(max)change,identifying 8.23 cm as the minimum threshold required for significant improvement.Subgroup analyses regarding muscle strength did not reveal any significant moderators.Conclusion IT+BFR enhances physiological adaptations and optimizes aspects of endurance performance,with moderators including training status,IT protocol(intensity,mode,and type),and cuff width.This intervention addresses various IT-related challenges and provides tailored protocols and benefits for diverse populations.展开更多
With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety a...With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety and higher energy density potential,are regarded as a promising next-generation energy storage technology.However,the practical appli-cation of solid-state electrolytes(SSEs)remains hindered by several challenges,including low Li+ion conductivity,poor interfacial compatibility with electrodes,unfavorable mechanical properties and difficulties in scalable manufacturing.This review systematically examines recent progress in SSEs,including inorganic types(oxides,sulfides,halides),organic types(polymers,plastic crystals,poly(ionic liquids)(PILs)),and the emerging class of soft solid-state electrolytes(S3Es),especially those based on“rigid-flexible synergy”composites and“Li+-desolvation”mechanism using porous frameworks.Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone.In contrast,S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties(e.g.,ionic conductivity and stability window),mechanical integrity,and processability,showing great promise as next-generation SSEs.Furthermore,the application-ori-ented challenges and emerging trends in S3E research are outlined,aiming to provide strategic insights into future develop-ment of high-performance SSEs.展开更多
[Objective] The paper aimed to study the improved effect of local beef cattle with Fleckvieh cattle and provide theoretical basic data for local cattle industry in central plain agricultural area in China. [Method] Wi...[Objective] The paper aimed to study the improved effect of local beef cattle with Fleckvieh cattle and provide theoretical basic data for local cattle industry in central plain agricultural area in China. [Method] With 500 local beef cattle as female parents and Fleckvieh cattle as male parents,hybridization improvement was conducted via artificial insemination. The growth performance,slaughter performance,milk performance and milk components of F1 and F2 hybrids were measured. [Result] The birth body weights of F2 were significantly higher than those of local beef cow,but there was no remarkable difference between F1 and local beef cow or F1 and F2. The growth rates of F1 and F2 at different stages were higher than those of local beef cattle. The slaughter performance,such as carcass weight( P < 0. 05),dressing percentage,net meat rate( P < 0. 05),marbling score of F1 and F2 were higher than those of local beef cow. Milk production performance,such as actual milk yield,305 d corrected milk yield and 4% standard milk yield of F2 were signally higher than those of F1 and local beef cattle( P< 0. 05),and F1 was markedly higher than local beef cattle( P < 0. 05). For milk composition,although milk fat percentage,milk protein rate,lactose rate and total solids( TS) of F1 and F2 were slightly lowered compared with local beef cattle at varying degrees,they were still at high levels compared with Holstein cows.[Conclusion]Fleckvieh cattle,as a male parent,can significantly improved growth performance,slaughter performance and milk performance of offsprings. It would also increases the economic efficiency of local beef cattle by higher quality and price,as well as changing production model from beef to dual purpose of beef and milk.展开更多
In the process of the development of music art, vocal music skills are an important way to express the singing content and feelings, which is beneficial for the singers to understand the specific connotation of the wo...In the process of the development of music art, vocal music skills are an important way to express the singing content and feelings, which is beneficial for the singers to understand the specific connotation of the works. From the current actual situation, there are still some problems in the process of vocal music teaching. Therefore, it is necessary to integrate various factors, especially emotional factors, psychological factors, physical factors and so on, to improve the artistic expression. This article will start with the principle of performance skills in vocal music practice and explore how to cultivate vocal music performance skills from different aspects.展开更多
Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillar...Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic trairdng continue to be investigated. Exposure to sufficiently high altitude (2000-3000 m) for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.展开更多
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c...With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.展开更多
An OpenMP approach was proposed to parallelize the sequential molecular dynamics(MD) code on shared memory machines. When a code is converted from the sequential form to the parallel form, data dependence is a main pr...An OpenMP approach was proposed to parallelize the sequential molecular dynamics(MD) code on shared memory machines. When a code is converted from the sequential form to the parallel form, data dependence is a main problem. A traditional sequential molecular dynamics code is anatomized to find the data dependence segments in it, and the two different methods, i.e., recover method and backward mapping method were used to eliminate those data dependencies in order to realize the parallelization of this sequential MD code. The performance of the parallelized MD code was analyzed by using some performance analysis tools. The results of the test show that the computing size of this code increases sharply form 1 million atoms before parallelization to 20 million atoms after parallelization, and the wall clock during computing is reduced largely. Some hot-spots in this code are found and optimized by improved algorithm. The efficiency of parallel computing is 30% higher than that of before, and the calculation time is saved and larger scale calculation problems are solved.展开更多
In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compa...In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.展开更多
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid...To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.展开更多
The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The resu...The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively.展开更多
The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these material...The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these materials ranges from 3 to 100 MPa. The relationship between the compressive strength of the grouting slurry and the cracking property of SFP was obtained at different loading rates and different temperatures. The peak load, fracture energy(E), flexible index(FI), and cracking resistance index(CRI) were calculated to determine the material performance. The results show that the compressive strength of the grout influences the cracking behavior. With a higher comprehensive strength grouting slurry, the FI value of SFP decreased initially and then increased slightly at 25 ℃ in 50 mm/min. The CRI value decreased at the same time. E values changed just according to the test temperature and loading rate. The damage paths of SFP are different. The damage path of the SFP sample appears as diffuse damage at 1 mm/min at 60 ℃ or clean damage at 50 mm/min at 25 ℃. These findings indicate that there is a correlation between the compressive strength of grouting slurry and SFP cracking behavior. The cracking form is influenced by loading rate and temperature.展开更多
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ...This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.展开更多
文摘We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.
文摘We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.
基金partially supported by the State Funding Agency of Minas Gerais,Brazil(FAPEMIG),Process No.APQ-01811-21supported by Alexander von Humboldt-Stiftung(AvH)/Coordena??o de Aperfei?oamento de Pessoal de Nível Superior(CAPES)+1 种基金National Council for Scientific and Technological Development-CNPq(Process No.308138/2022-8)supported by National Council for Scientific and Technological Development-CNPq(Process No.BPD-00905-22).
文摘Background:Ischemic preconditioning(IPC)is purported to have beneficial effects on athletic performance,although findings are inconsistent,with some studies reporting placebo effects.The majority of studies have investigated IPC alongside a placebo condition,but without a control condition that was devoid of experimental manipulation,thereby limiting accurate determination of the IPC effects.Therefore,the aims of this study were to assess the impact of the IPC intervention,compared to both placebo and no intervention,on exercise capacity and athletic performance.Methods:A systematic search of PubMed,Embase,SPORTDiscus,Cochrane Library,and Latin American and Caribbean Health Sciences Literature(LILACS)covering records from their inception until July 2023 was conducted.To qualify for inclusion,studies had to apply IPC as an acute intervention,comparing it with placebo and/or control conditions.Outcomes of interest were performance(force,number of repetitions,power,time to exhaustion,and time trial performance),physiological measurements(maximum oxygen consumption,and heart rate),or perceptual measurements(RPE).For each outcome measure,we conducted 3 independent meta-analyses(IPC vs.placebo,IPC vs.control,placebo vs.control)using an inverse-variance random-effects model.The between-treatment effects were quantified by the standardized mean difference(SMD),accompanied by their respective 95%confidence intervals.Additionally,we employed the Grading of Recommendations,Assessment,Development and Evaluation(GRADE)approach to assess the level of certainty in the evidence.Results:Seventy-nine studies were included in the quantitative analysis.Overall,IPC demonstrates a comparable effect to the placebo condition(using a low-pressure tourniquet),irrespective of the subjects'training level(all outcomes presenting p>0.05),except for the outcome of time to exhaustion,which exhibits a small magnitude effect(SMD=0.37;p=0.002).Additionally,the placebo exhibited effects notably greater than the control condition(outcome:number of repetitions;SMD=0.45;p=0.03),suggesting a potential influence of participants'cognitive perception on the outcomes.However,the evidence is of moderate to low certainty,regardless of the comparison or outcome.Conclusion:IPC has significant effects compared to the control intervention,but it did not surpass the placebo condition.Its administration might be influenced by the cognitive perception of the receiving subject,and the efficacy of IPC as an ergogenic strategy for enhancing exercise capacity and athletic performance remains questionable.
基金supported by the National Natural Science Foundation of China(Nos.U21A2054,21905007)the Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(Grant No.202255464).
文摘The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.
基金supported by the National Natural Science Foundation of China(Nos.52071053,U1704253,and 52103334).
文摘Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.
基金supported by the National Natural Science Foundation of China(No.52377026)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Natural Science Foundation of Shandong Province,China(No.ZR2024ME046).
文摘With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.
基金supported by the National Natural Science Foundation of China(52372099,52202328,22461142135,22479046)the Shanghai Sailing Program(22YF1455500)the Shanghai Magnolia Talent Plan Pujiang Project(24PJD128)。
文摘Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread applications are hindered by low ionic conductivity at room temperature and lithium dendrite growth.Herein,we report a novel solid-state composite membrane electrolyte design that combines the vertically aligned channel structure and copolymer with a radial gradient composition.Within the vertically aligned channels,the composition of poly(vinyl ethylene carbonate-co-poly(ethylene glycol)diacrylate)(P(VEC-PEGDA)varies in a gradient along the radial direction:from the center to the wall of vertically aligned channels,the proportion of vinyl ethylene carbonate(VEC)in the copolymer decreases,while the proportion of poly(ethylene glycol)diacrylate(PEGDA)increases accordingly.It can be functionally divided into a mechanical-reinforcement layer and a fast-ion-conducting layer.The resulting solid-state composite membrane electrolyte achieves a high critical current density of 1.2 mA cm^(-2)and high ionic conductivity of 2.03 mS cm^(-1)at room temperature.Employing this composite membrane electrolyte,a Li//Li symmetric cell exhibits stable cycling for over 1850 h at 0.2 m A cm^(-2)/0.2 m A h cm^(-2),and a Li//LiFePO4(LFP)battery maintains 77.3% capacity retention at 2 C after 300 cycles.Our work provides insight into the rational design of safer and more efficient solidstate batteries through electrolyte structural engineering.
基金supported by the National Natural Science Foundation of China(51973236,51573213)Zhuhai Industry University-Research Cooperation Program(2320004002721)。
文摘The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity and poor oxidative stability.To address these issues,we introduce a novel in-situ ionization strategy using radical polymer poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl acrylate)(PTPA)to enhance ionic conductivity and achieve a high electrochemical stability window in PEO-based electrolyte.Density functional theory(DFT)calculations and molecular dynamics(MD)simulations reveal that the in-situ generation of PTPA+from PTPA within the battery,not only exceptionally decreases the low Highest Occupied Molecular Orbital(HOMO)energy level,but also exhibits a robust anchoring effect on TFSI-anions in the electrolyte,which boosts Li^(+) migration and enables dense Li deposition behavior.As a result,the PEO/10 wt%PTPA/LiTFSI electrolyte demonstrates remarkable oxidative stability up to 5 V and a high Li^(+)transference number(0.57).Li-Li symmetric cells maintain stability over 1000 h at 0.2 mA cm^(-2),and LiFePO_(4)(LFP)//Li battery also presents an enduring cyclic performance over 500 cycles with a remarkable high-capacity retention of 91.8% at 0.5C.Impressively,by coupling with a high-voltage LiCoO_(2)(LCO)cathode(cut-off voltage 4.6 V),the assembled ASSLBs reach a capacity retention of 87.1% after 500 cycles at 1C.Our study explores the mechanism of radical polymer in PEO-based electrolyte and provides a fire-new strategy for construction of high-performance and multifunctional ASSLBs.
文摘Purpose We aimed to determine:(a)the chronic effects of interval training(IT)combined with blood flow restriction(BFR)on physiological adaptations(aerobic/anaerobic capacity and muscle responses)and performance enhancement(endurance and sprints),and(b)the influence of participant characteristics and intervention protocols on these effects.Methods Searches were conducted in PubMed,Web of Science(Core Collection),Cochrane Library(Embase,ClinicalTrials.gov,and International Clinical Trials Registry Platform),and Chinese National Knowledge Infrastructure on April 2,with updates on October 17,2024.Pooled effects for each outcome were summarized using Hedge's g(g)through meta-analysis-based random effects models,and subgroup and regression analyses were used to explore moderators.Results A total of 24 studies with 621 participants were included.IT combined with BFR(IT+BFR)significantly improved maximal oxygen uptake(VO2_(max))(g=0.63,I^(2)=63%),mean power during the Wingate 30-s test(g=0.70,I^(2)=47%),muscle strength(g=0.88,I^(2)=64%),muscle endurance(g=0.43,I^(2)=0%),time to fatigue(g=1.26,I^(2)=86%),and maximal aerobic speed(g=0.74,I^(2)=0%)compared to IT alone.Subgroup analysis indicated that participant characteristics including training status,IT intensity,and IT modes significantly moderated VO2_(max)(subgroup differences:p<0.05).Specifically,IT+BFR showed significantly superior improvements in VO2_(max)compared to IT alone in trained individuals(g=0.76)at supra-maximal intensity(g=1.29)and moderate intensity(g=1.08)as well as in walking(g=1.64)and running(g=0.63)modes.Meta-regression analysis showed cuff width(β=0.14)was significantly associated with VO2_(max)change,identifying 8.23 cm as the minimum threshold required for significant improvement.Subgroup analyses regarding muscle strength did not reveal any significant moderators.Conclusion IT+BFR enhances physiological adaptations and optimizes aspects of endurance performance,with moderators including training status,IT protocol(intensity,mode,and type),and cuff width.This intervention addresses various IT-related challenges and provides tailored protocols and benefits for diverse populations.
基金the financial support from the National Key R&D Program of China (Grant No. 2021YFB3800300)the supports from National Key R&D Program of China (Grant No. 2022YFB3807700)+6 种基金the National Natural Science Foundation of China (Grant No. U20A20248)the supports from the National Natural Science Foundation of China (Grant Nos. W2441017, 22409103)the “Innovation Yongjiang 2035” Key R&D Program (Grant Nos. 2024Z040, 2025Z063)the National Key R&D Program of China (Grant No. 2023YFC2812700)the Natural Science Foundation of Shandong Province (Grant No. ZR2024YQ008)funding supports from the National Key R&D Program of China (Grant No. 2021YFB3800300)science and technology innovation fund for emission peak and carbon neutrality of Jiangsu province (Grant Nos. BK20220034, BK20231512)。
文摘With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety and higher energy density potential,are regarded as a promising next-generation energy storage technology.However,the practical appli-cation of solid-state electrolytes(SSEs)remains hindered by several challenges,including low Li+ion conductivity,poor interfacial compatibility with electrodes,unfavorable mechanical properties and difficulties in scalable manufacturing.This review systematically examines recent progress in SSEs,including inorganic types(oxides,sulfides,halides),organic types(polymers,plastic crystals,poly(ionic liquids)(PILs)),and the emerging class of soft solid-state electrolytes(S3Es),especially those based on“rigid-flexible synergy”composites and“Li+-desolvation”mechanism using porous frameworks.Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone.In contrast,S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties(e.g.,ionic conductivity and stability window),mechanical integrity,and processability,showing great promise as next-generation SSEs.Furthermore,the application-ori-ented challenges and emerging trends in S3E research are outlined,aiming to provide strategic insights into future develop-ment of high-performance SSEs.
基金Supported by National"973"Project(2011CB100802)Project of Beef Cattle Technology Innovation Team of Henan Agricultural Industry Research System(2013-14)
文摘[Objective] The paper aimed to study the improved effect of local beef cattle with Fleckvieh cattle and provide theoretical basic data for local cattle industry in central plain agricultural area in China. [Method] With 500 local beef cattle as female parents and Fleckvieh cattle as male parents,hybridization improvement was conducted via artificial insemination. The growth performance,slaughter performance,milk performance and milk components of F1 and F2 hybrids were measured. [Result] The birth body weights of F2 were significantly higher than those of local beef cow,but there was no remarkable difference between F1 and local beef cow or F1 and F2. The growth rates of F1 and F2 at different stages were higher than those of local beef cattle. The slaughter performance,such as carcass weight( P < 0. 05),dressing percentage,net meat rate( P < 0. 05),marbling score of F1 and F2 were higher than those of local beef cow. Milk production performance,such as actual milk yield,305 d corrected milk yield and 4% standard milk yield of F2 were signally higher than those of F1 and local beef cattle( P< 0. 05),and F1 was markedly higher than local beef cattle( P < 0. 05). For milk composition,although milk fat percentage,milk protein rate,lactose rate and total solids( TS) of F1 and F2 were slightly lowered compared with local beef cattle at varying degrees,they were still at high levels compared with Holstein cows.[Conclusion]Fleckvieh cattle,as a male parent,can significantly improved growth performance,slaughter performance and milk performance of offsprings. It would also increases the economic efficiency of local beef cattle by higher quality and price,as well as changing production model from beef to dual purpose of beef and milk.
文摘In the process of the development of music art, vocal music skills are an important way to express the singing content and feelings, which is beneficial for the singers to understand the specific connotation of the works. From the current actual situation, there are still some problems in the process of vocal music teaching. Therefore, it is necessary to integrate various factors, especially emotional factors, psychological factors, physical factors and so on, to improve the artistic expression. This article will start with the principle of performance skills in vocal music practice and explore how to cultivate vocal music performance skills from different aspects.
文摘Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic trairdng continue to be investigated. Exposure to sufficiently high altitude (2000-3000 m) for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.
基金supported by the National Natural Science Foundation of China (51438003,51878507)
文摘With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.
基金Project (50371026) supported by the National Natural Science Foundation of China
文摘An OpenMP approach was proposed to parallelize the sequential molecular dynamics(MD) code on shared memory machines. When a code is converted from the sequential form to the parallel form, data dependence is a main problem. A traditional sequential molecular dynamics code is anatomized to find the data dependence segments in it, and the two different methods, i.e., recover method and backward mapping method were used to eliminate those data dependencies in order to realize the parallelization of this sequential MD code. The performance of the parallelized MD code was analyzed by using some performance analysis tools. The results of the test show that the computing size of this code increases sharply form 1 million atoms before parallelization to 20 million atoms after parallelization, and the wall clock during computing is reduced largely. Some hot-spots in this code are found and optimized by improved algorithm. The efficiency of parallel computing is 30% higher than that of before, and the calculation time is saved and larger scale calculation problems are solved.
基金Projects(51575539, U1837207) supported by the National Natural Science Foundation of ChinaProject(2020RC2002)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774)supported by Natural Science Foundation of Hunan Province,China。
文摘In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.
基金financially supported by the National Key Research and Development Program of China (2017YFA0208200)the National Natural Science Foundation of China (52102100,22022505 and 21872069)+4 种基金the Natural Science Foundation of Jiangsu Province (BK20181469)Guangdong Basic and Applied Basic Research Foundation (2020A1515110035)the Fundamental Research Funds for the Central Universities (0205-14380266,0205-14380272)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220008)the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District。
文摘To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.
基金financial supports from the Key Development Project of Sichuan Province,China (No.2017GZ0399)the National Natural Science Foundation of China (No.52061040)the Open Projects of the Key Laboratory of Advanced Technologies of Materials,Ministry of Education,Southwest Jiaotong University,China (No.KLATM202003)。
文摘The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively.
基金Funded by National Natural Science Foundation of China(No.52078241)the Natural Science Foundation of Jiangsu Province(No.BK20210058)。
文摘The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these materials ranges from 3 to 100 MPa. The relationship between the compressive strength of the grouting slurry and the cracking property of SFP was obtained at different loading rates and different temperatures. The peak load, fracture energy(E), flexible index(FI), and cracking resistance index(CRI) were calculated to determine the material performance. The results show that the compressive strength of the grout influences the cracking behavior. With a higher comprehensive strength grouting slurry, the FI value of SFP decreased initially and then increased slightly at 25 ℃ in 50 mm/min. The CRI value decreased at the same time. E values changed just according to the test temperature and loading rate. The damage paths of SFP are different. The damage path of the SFP sample appears as diffuse damage at 1 mm/min at 60 ℃ or clean damage at 50 mm/min at 25 ℃. These findings indicate that there is a correlation between the compressive strength of grouting slurry and SFP cracking behavior. The cracking form is influenced by loading rate and temperature.
基金the financial supports provided by the National Natural Science Foundation of China(U2040222,52293431,and 52278259)。
文摘This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.