Dielectric ceramics of M(x)Al6(1-x)Si2O13 doped mullite were synthesized via co-precipitation technique. The X-ray diffrac-tion profiles revealed that these nanoparticles were crystallized well and the volume of m...Dielectric ceramics of M(x)Al6(1-x)Si2O13 doped mullite were synthesized via co-precipitation technique. The X-ray diffrac-tion profiles revealed that these nanoparticles were crystallized well and the volume of mullite unit cell was increased as a function of the ionic radius of dopant ion. TEM images showed regular orthorhombic crystal morphology for the pure mullite sample. Meanwhile, the doped samples exhibited slightly distorted crystal morphology of larger particle sizes. DSC thermograms evinced that the exo-thermic peak temperature of mullite was shifted to the lower value with M3+ion insertion. The photoluminescence spectra were stud-ied for mullite samples, and it was found that the intensity of the emission spectra was affected by the M3+ion type. It was found that, Y3+doped mullite achieved the minimum dielectric loss value of 0.01 in the radio wave frequency region (1 MHz). Meanwhile, Gd3+doped mullite achieved the minimum dielectric loss value of 0.09 in the microwave frequency region (1 GHz).展开更多
The silica coated aluminum composite particles were prepared by hydrolysis–condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of aluminum particle.The structure,morphology,and properties of th...The silica coated aluminum composite particles were prepared by hydrolysis–condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of aluminum particle.The structure,morphology,and properties of the silica coated aluminum were studied.The peaks of Si—O—Si are presented in the Fourier transform infrared(FT-IR)spectrum of the composite particles.The thickness of the silica shell is about 80 nm according to the results of transmission electron microscopy(TEM)and laser particle size analysis,while the mean diameter of the aluminum particle is 7.13μm.The mass fraction of silica in the sample was determined by fluorescent X-ray spectrometry(XRF).Result of the thermogravimetric analysis(TGA)indicates that thermal stability of silica coated aluminum particles is better than that of pure aluminum particles at low temperature while more reactive at high temperature.展开更多
Batch preparation of nano-HMX was achieved via a mechanical trituration method. The morphology and particle size of nano-HMX and raw RDX were characterized using SEM. Then nano-HMX was used in a formulation of composi...Batch preparation of nano-HMX was achieved via a mechanical trituration method. The morphology and particle size of nano-HMX and raw RDX were characterized using SEM. Then nano-HMX was used in a formulation of composite modified double base propellant containing RDX. The method is to use nanoHMX to replace the RDX in the formulation by 10% gradually with the total mass content of RDX and HMX unchanged. The burning rate, mechanical sensitivity and mechanical property of propellant strands with different mass content of nano-HMX were tested. The results indicate that the 30% content of nanoHMX has the best comprehensive performance which can be used as an improvement of the existing formula. A possible mechanism of action was discussed.展开更多
To achieve aluminum particles with ultrafine granularity and high reactivity,the mechanical ball-milling method was adopted and three kinds of coatings,including stearic acid(SA),viton and dinitrotoluene(DNT),were add...To achieve aluminum particles with ultrafine granularity and high reactivity,the mechanical ball-milling method was adopted and three kinds of coatings,including stearic acid(SA),viton and dinitrotoluene(DNT),were added.The effects of milling time and different coatings on granularity and reactivity of ultrafine aluminum particles were studied.The structures of prepared ultrafine aluminum were characterized by scanning electron microscopy,X-ray particle diffraction and the thermal properties were analyzed by TG/DSC.Besides,the reactivity of prepared ultrafine aluminum particles was comprehensively analyzed and judged according to several thermodynamic parameters,the maximal oxidation rate,the oxidation degree of aluminum and the enthalpy change.The results revealed that aluminum particles prepared by the mechanical ball milling method were all flake-like and the particle sizes were below5 mm with nanometer-scale thickness.And the crystal form of aluminum was found to be unchanged.Besides,the ultrafine flake aluminum coated with stearic acid after milling for 5 h showed the highest reactivity with 56.1% of oxidation degree before 660℃,0.945 mg/℃ of maximal oxidation rate and 20491 J/g of enthalpy change.展开更多
Pigment nanoparticles with a size range of 10~100 nm were produced from large agglomerates via a stirred media mill operating in the wet-batch mode and using polymeric media. The effects of several operating variables...Pigment nanoparticles with a size range of 10~100 nm were produced from large agglomerates via a stirred media mill operating in the wet-batch mode and using polymeric media. The effects of several operating variables such as the surfactant concentration, polystyrene media loading, and media size on the pigment size distribution of the product were studied. The process dynamics was also investigated. Dynamic light scattering and electron microscopy were used as the characterization techniques. The polymeric grinding media are found to be effective for the production of pigment nanoparticles. The experimental results suggest the existence of an optimum media size and surfactant concentration. A population balance model of the process reveals a transition from first-order breakage kinetics for rela-tively coarse particles to non-first-order kinetics, with a delay period, for the smaller particles. The model implies that large agglomerates split in a first-order fashion whereas the breakage of individual nanoparticles may depend on induced fatigue of the particles.展开更多
基金Project supported by Science and Technology Development Fund(STDF),Egypt Project(ID 3681)
文摘Dielectric ceramics of M(x)Al6(1-x)Si2O13 doped mullite were synthesized via co-precipitation technique. The X-ray diffrac-tion profiles revealed that these nanoparticles were crystallized well and the volume of mullite unit cell was increased as a function of the ionic radius of dopant ion. TEM images showed regular orthorhombic crystal morphology for the pure mullite sample. Meanwhile, the doped samples exhibited slightly distorted crystal morphology of larger particle sizes. DSC thermograms evinced that the exo-thermic peak temperature of mullite was shifted to the lower value with M3+ion insertion. The photoluminescence spectra were stud-ied for mullite samples, and it was found that the intensity of the emission spectra was affected by the M3+ion type. It was found that, Y3+doped mullite achieved the minimum dielectric loss value of 0.01 in the radio wave frequency region (1 MHz). Meanwhile, Gd3+doped mullite achieved the minimum dielectric loss value of 0.09 in the microwave frequency region (1 GHz).
基金Project(50306008)supported by the National Natural Science Foundation of China
文摘The silica coated aluminum composite particles were prepared by hydrolysis–condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of aluminum particle.The structure,morphology,and properties of the silica coated aluminum were studied.The peaks of Si—O—Si are presented in the Fourier transform infrared(FT-IR)spectrum of the composite particles.The thickness of the silica shell is about 80 nm according to the results of transmission electron microscopy(TEM)and laser particle size analysis,while the mean diameter of the aluminum particle is 7.13μm.The mass fraction of silica in the sample was determined by fluorescent X-ray spectrometry(XRF).Result of the thermogravimetric analysis(TGA)indicates that thermal stability of silica coated aluminum particles is better than that of pure aluminum particles at low temperature while more reactive at high temperature.
基金financially supported by the Youth Science and Technology Innovation of China North Chemical Industry Group Co.,Ltd.Natural Science Foundation of China(Project No 50972060 and No 51606102)+4 种基金the Weapon Research Support Fund(62201070804)Qing Lan ProjectEnvironmental Protection Scientific Research Project of Jiangsu Province(2016056)a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Shanghai Aerospace Science and Technology Innovation Fund(SAST2015020)Basic Product Innovation Technology Research Project of Explosives
文摘Batch preparation of nano-HMX was achieved via a mechanical trituration method. The morphology and particle size of nano-HMX and raw RDX were characterized using SEM. Then nano-HMX was used in a formulation of composite modified double base propellant containing RDX. The method is to use nanoHMX to replace the RDX in the formulation by 10% gradually with the total mass content of RDX and HMX unchanged. The burning rate, mechanical sensitivity and mechanical property of propellant strands with different mass content of nano-HMX were tested. The results indicate that the 30% content of nanoHMX has the best comprehensive performance which can be used as an improvement of the existing formula. A possible mechanism of action was discussed.
基金supported by the Natural Science Foundation of China (Project No51606102)the Fundamental Research Funds for the Central Universities (No. 30916011315)+3 种基金the Qing Lan Project, the Weapon Research Support Fund (No. 62201070827)a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Shanghai Aerospace Science and Technology Innovation Fund (SAST2015020)Basic Product Innovation Technology Research Project of Explosives
文摘To achieve aluminum particles with ultrafine granularity and high reactivity,the mechanical ball-milling method was adopted and three kinds of coatings,including stearic acid(SA),viton and dinitrotoluene(DNT),were added.The effects of milling time and different coatings on granularity and reactivity of ultrafine aluminum particles were studied.The structures of prepared ultrafine aluminum were characterized by scanning electron microscopy,X-ray particle diffraction and the thermal properties were analyzed by TG/DSC.Besides,the reactivity of prepared ultrafine aluminum particles was comprehensively analyzed and judged according to several thermodynamic parameters,the maximal oxidation rate,the oxidation degree of aluminum and the enthalpy change.The results revealed that aluminum particles prepared by the mechanical ball milling method were all flake-like and the particle sizes were below5 mm with nanometer-scale thickness.And the crystal form of aluminum was found to be unchanged.Besides,the ultrafine flake aluminum coated with stearic acid after milling for 5 h showed the highest reactivity with 56.1% of oxidation degree before 660℃,0.945 mg/℃ of maximal oxidation rate and 20491 J/g of enthalpy change.
文摘Pigment nanoparticles with a size range of 10~100 nm were produced from large agglomerates via a stirred media mill operating in the wet-batch mode and using polymeric media. The effects of several operating variables such as the surfactant concentration, polystyrene media loading, and media size on the pigment size distribution of the product were studied. The process dynamics was also investigated. Dynamic light scattering and electron microscopy were used as the characterization techniques. The polymeric grinding media are found to be effective for the production of pigment nanoparticles. The experimental results suggest the existence of an optimum media size and surfactant concentration. A population balance model of the process reveals a transition from first-order breakage kinetics for rela-tively coarse particles to non-first-order kinetics, with a delay period, for the smaller particles. The model implies that large agglomerates split in a first-order fashion whereas the breakage of individual nanoparticles may depend on induced fatigue of the particles.