期刊文献+
共找到100,131篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
1
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Enhanced magnetic properties in a Fe-based amorphous alloy via ultrasonic vibration rapid processing 被引量:1
2
作者 Hong-Zhen Li Sajad Sohrabi +4 位作者 Xin Li Lu-Yao Li Jiang Ma Huan-Lin Peng Chao Yang 《Rare Metals》 2025年第4期2853-2860,共8页
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni... In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon. 展开更多
关键词 enhancing soft magnetic properties soft magnetic properties physical propertieshereinwe Fe based amorphous alloy amorphous alloy ribbon ultrasonic vibration rapid processing uvrp which Fe clusters ultrasonic vibration rapid processing
原文传递
SmdaNet: A hierarchical hard sample mining and domain adaptation neural network for fault diagnosis in industrial process
3
作者 Zhenhua Yu Zongyu Yao +2 位作者 Weijun Wang Qingchao Jiang Zhixing Cao 《Chinese Journal of Chemical Engineering》 2025年第8期146-157,共12页
Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in ... Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets. 展开更多
关键词 Industrial process BIOPROCESS Fault diagnosis Neural networks FERMENTATION
在线阅读 下载PDF
Dynamic Process Monitoring Based on Dot Product Feature Analysis for Thermal Power Plants
4
作者 Xin Ma Tao Chen Youqing Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期563-574,共12页
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d... Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity. 展开更多
关键词 Computational complexity dot product feature analysis(DPFA) dynamic process multivariate statistics process monitoring
在线阅读 下载PDF
Advances in conceptual process design:From conventional strategies to AI-assisted methods
5
作者 Ali Tarik Karagoz Omar Alqusair +1 位作者 Chao Liu Jie Li 《Chinese Journal of Chemical Engineering》 2025年第8期60-76,共17页
Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as ... Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future. 展开更多
关键词 Process systems Process design Mathematical programming Artificial intelligence Machine learning Neural networks
在线阅读 下载PDF
Towards a blank design method for manufacturing big-tapered profiled ring disk by spinning-rolling process 被引量:1
6
作者 Xuechao LI Lianggang GUO +1 位作者 Xiaoqing CHEN Heng LI 《Chinese Journal of Aeronautics》 2025年第1期70-86,共17页
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien... The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process. 展开更多
关键词 Blank design method Spinning-rolling process Big-tapered profiled ring disk Rolling ratio Intelligent FE simulation
原文传递
Novel mechanism of the grain boundary diffusion process with Tb based on the discovery of TbFe_(2) phase 被引量:1
7
作者 Wendi Zhang Zilong Wang +5 位作者 Xiaojun Sun Weibin Cui Haijun Peng Wenlong Yan Yang Luo Dunbo Yu 《Journal of Materials Science & Technology》 2025年第11期120-129,共10页
The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the... The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed. 展开更多
关键词 Grain boundary diffusion process TbFe_(2)phase Dissolution-solidification mechanism Core-shell structure The theory of mixing heat and phase separation
原文传递
AI for Process Manufacturing:Innovations,Trends,and Challenges
8
作者 Feng Qian 《Engineering》 2025年第9期1-2,共2页
Process manufacturing is going through a critical transformation in response to escalating demands for efficiency,sustainability,and intelligent innovation.With process manufacturing being characterized by complex wor... Process manufacturing is going through a critical transformation in response to escalating demands for efficiency,sustainability,and intelligent innovation.With process manufacturing being characterized by complex workflows and high resource consumption,the process manufacturing industry is under mounting pressure to optimize resource utilization,enhance intelligent design,reduce carbon emissions,and address emerging challenges in quality assurance,safety,and information integration. 展开更多
关键词 SUSTAINABILITY innovations critical transformation efficiency TRENDS CHALLENGES process manufacturing optimize resource utilizationenhance intelligent designreduce carbon emissionsand
在线阅读 下载PDF
Numerical Simulation of the Atomization Process for Blast Furnace Slag Granulation
9
作者 Li-Li Wang Hong-Xing Qin Nan Dong 《Fluid Dynamics & Materials Processing》 2025年第6期1489-1503,共15页
The so-called close-coupled gas atomization process involves melting a metal and using a high-pressure gas jet positioned close to the melt stream to rapidly break it into fine,spherical powder particles.This techniqu... The so-called close-coupled gas atomization process involves melting a metal and using a high-pressure gas jet positioned close to the melt stream to rapidly break it into fine,spherical powder particles.This technique,adapted for blast furnace slag granulation using a circular seam nozzle,typically aims to produce solid slag particles sized 30–140μm,thereby allowing the utilization of slag as a resource.This study explores the atomization dynamics of liquid blast furnace slag,focusing on the effects of atomization pressure.Primary atomization is simulated using a combination of the Volume of Fluid(VOF)method and the Shear Stress Transport k-ωturbulence model,while secondary atomization is analyzed through the Discrete Phase Model(DPM).The results reveal that primary atomization progresses in three stages:the slag column transforms into an umbrella-shaped liquid film,whose leading edge fragments into particles while forming a cavity-like structure,which is eventually torn into ligaments.This primary deformation is driven by the interplay of airflow velocity in the recirculation zone and the guide tube outlet pressure(Fp).Increasing the atomization pressure amplifies airflow velocity,recirculation zone size,expansion and shock waves,though the guide tube outlet pressure variations remain irregular.Notably,at 4.5 MPa,the primary deformation is most pronounced.Secondary atomization yields finer slag particles as a result of more vigorous primary atomization.For this pressure,the smallest average particle size and the highest yield of particles within the target range(30–140μm)are achieved. 展开更多
关键词 Blast furnace slag granulation close-coupled gas atomization atomization pressure atomization process
在线阅读 下载PDF
Physically-consistent-WGAN based small sample fault diagnosis for industrial processes
10
作者 Siyu Tang Hongbo Shi +2 位作者 Bing Song Yang Tao Shuai Tan 《Chinese Journal of Chemical Engineering》 2025年第2期163-174,共12页
In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversa... In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods. 展开更多
关键词 Chemical processes Fault diagnosis Physical consistency Generative adversarial networks Small sample data
在线阅读 下载PDF
Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing
11
作者 Ting Chen Banglong Fu +7 位作者 Uceu FHRSuhuddin Tong Shen Gaohui Li Emad Maawad Junjun Shen Jorge F dos Santos Jean Pierre Bergmann Benjamin Klusemann 《Journal of Materials Science & Technology》 2025年第29期209-226,共18页
Constrained Friction Processing(CFP),a novel friction-based technique,has been developed to efficiently process fine-grained magnesium(Mg)rods,expanding the potential applications of biodegradable Mg alloys in medical... Constrained Friction Processing(CFP),a novel friction-based technique,has been developed to efficiently process fine-grained magnesium(Mg)rods,expanding the potential applications of biodegradable Mg alloys in medical implants.This study investigates the enhancement of mechanical properties through the implementation of multiple pass CFP(MP-CFP)in comparison to the conventional single pass CFP.The results reveal a substantial improvement in compressive yield strength(CYS),ultimate compressive strength,and failure plastic strain by 11%,28%,and 66%,respectively.A comprehensive analysis of material evolution during processing and the effects of the final microstructure on mechanical properties was conducted.The intricate material flow behavior during the final plunge stage of MP-CFP results in a reduced intensity of local basal texture and macrotexture.The diminished intensity of basal texture,combined with a low geometrical compatibility factor at the top of the rod after MP-CFP,effectively impedes slip transfer across grain boundaries.This leads to a local strain gradient along the compression direction,ultimately contributing to the observed enhancement in mechanical properties.The Mg-0.5Zn0.3Ca(wt.%)alloy,after texture modification by MP-CFP,exhibits a competitive CYS compared with other traditional methods,highlighting the promising application potential of MP-CFP. 展开更多
关键词 Constrained friction processing Magnesium alloys Microstructure Mechanical properties TEXTURE Plastic deformation
原文传递
Intelligent Operational Decision-Making in Industrial Process:Development and Prospects
12
作者 Tianyou Chai Siyu Cheng 《Engineering》 2025年第9期40-52,共13页
Based on an analysis of the role of industrial control and optimization technologies in the Industrial Revolution,as well as the current situation and existing problems of operational decision-making(ODM)for industria... Based on an analysis of the role of industrial control and optimization technologies in the Industrial Revolution,as well as the current situation and existing problems of operational decision-making(ODM)for industrial process,this paper introduces the concept of intelligent ODM in industrial process,shapes its future directions,and highlights key technical challenges.By the tight conjoining of and coordination between industrial artificial intelligence(AI)with industrial control and optimization technologies,as well as the Industrial Internet with industrial computer management and control systems,an intelligent operational optimization decision-making methodology is proposed for complex industrial process.The intelligent ODM methodology and its successful application demonstrate that the tight conjoining of and coordination between next-generation information technologies with industrial control and optimization technologies will promote the development of industrial intelligent ODM.Finally,main research directions and ideas are outlined for realizing intelligent ODM in industrial process. 展开更多
关键词 Operational decision-making INTELLIGENCE Industrial artificial intelligence Industrial Internet Complex industrial process
在线阅读 下载PDF
Innovative Food Processing Technologies Promoting Efficient Utilization of Nutrients in Staple Food Crops
13
作者 Yi Yuan Xinyao Wei +13 位作者 Yuhong Mao Yuxue Zheng Ni He Yuan Guo Ming Wu Joseph Dumpler Bing Li Xu Chen Xixi Cai Jianping Wu Yongqi Tian Sihan Xie Jeyamkondan Subbiah Shaoyun Wang 《Engineering》 2025年第7期229-244,共16页
With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-leng... With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-lenge,prompting innovation in food processing technologies.This review introduces first the common nutritional challenges in the processing of staple food crops,followed by the comprehensive examination of research aiming to enhance the nutritional quality of staple food crop-based foods through innovative processing technologies,including microwave(MW),pulsed electric field(PEF),ultrasound,modern fer-mentation technology,and enzyme technology.Additionally,soybean processing is used as an example to underscore the importance of integrating innovative processing technologies for optimizing nutrient utilization in staple food crops.Although these innovative processing technologies have demonstrated a significant potential to improve nutrient utilization efficiency and enhance the overall nutritional pro-file of staple food crop-based food products,their current limitations must be acknowledged and addressed in future research.Fortunately,advancements in science and technology will facilitate pro-gress in food processing,enabling both the improvement of existing techniques as well as the develop-ment of entirely novel methodologies.This work aims to enhance the understanding of food practitioners on the way processing technologies may optimize nutrient utilization,thereby fostering innovation in food processing research and synergistic multi-technological strategies,ultimately providing valuable references to address global food security challenges. 展开更多
关键词 Staple food crops Innovative food processing technologies Nutritional enhancement Nutrient utilization Antinutritional factors By-product utilization
在线阅读 下载PDF
Achieving excellent strength-ductility synergy of wire-arc additive manufactured Mg-Gd-Y-Zr alloy via friction stir processing
14
作者 Wenzhe Yang Kuitong Yang +3 位作者 Haiou Yang Zihong Wang Chenghui Hu Xin Lin 《Journal of Magnesium and Alloys》 2025年第6期2500-2508,共9页
Friction stir processing(FSP)was applied to wire-arc additively manufactured(WAAM)Mg-9.54Gd-1.82Y-0.44Zr(GW92K)alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition.FSP indu... Friction stir processing(FSP)was applied to wire-arc additively manufactured(WAAM)Mg-9.54Gd-1.82Y-0.44Zr(GW92K)alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition.FSP induced complete dissolution of the coarse Mg_(5)(Gd,Y)eutectic network(initial size:3.3±0.5μm)and triggered dynamic recrystallization,achieving a 69.5%grain refinement from 16.4μm(WAAMed)to 5.0μm(FSPed).This microstructural transformation enhanced ultimate tensile strength(UTS)by 32%(217±3 MPa→286±2 MPa),yield strength(YS)by 46%(124±2 MPa→182±7 MPa),and elongation(EL)by 35%(9.7±1.1%→13.1±1.4%).Quantitative analysis via Hall-Petch relationship confirmed that grain refinement contributed~50 MPa(79%)of the total YS increment,while nano-precipitation(β/βphases<20 nm)effects accounted for the remaining~13 MPa.The simultaneous strength-ductility enhancement originates from FSP-induced defect elimination(porosity reduction:1.75%→0.18%)and dual-phase grain boundary pinning by Zr particles andβ-Mg_(5)(Gd,Y)precipitates.These findings establish FSP as a viable post-treatment for overcoming WAAM limitations in high-performance Mg-RE alloy fabrication. 展开更多
关键词 Additive manufacturing Friction stir processing Mg-Gd-y-Zr alloy Microstructure Mechanical properties.
在线阅读 下载PDF
Process fault root cause diagnosis through state evolution mapping based on temporal unit shapelets
15
作者 Zhenhua Yu Guan Wang +1 位作者 Qingchao Jiang Xuefeng Yan 《Chinese Journal of Chemical Engineering》 2025年第8期96-106,共11页
Accurate fault root cause diagnosis is essential for ensuring stable industrial production. Traditional methods, which typically rely on the entire time series and overlook critical local features, can lead to biased ... Accurate fault root cause diagnosis is essential for ensuring stable industrial production. Traditional methods, which typically rely on the entire time series and overlook critical local features, can lead to biased inferences about causal relationships, thus hindering the accurate identification of root cause variables. This study proposed a shapelet-based state evolution graph for fault root cause diagnosis (SEG-RCD), which enables causal inference through the analysis of the important local features. First, the regularized autoencoder and fault contribution plot are used to identify the fault onset time and candidate root cause variables, respectively. Then, the most representative shapelets were extracted to construct a state evolution graph. Finally, the propagation path was extracted based on fault unit shapelets to pinpoint the fault root cause variable. The SEG-RCD can reduce the interference of noncausal information, enhancing the accuracy and interpretability of fault root cause diagnosis. The superiority of the proposed SEG-RCD was verified through experiments on a simulated penicillin fermentation process and an actual one. 展开更多
关键词 Root cause diagnosis Neural networks Shapelet FERMENTATION BIOPROCESS
在线阅读 下载PDF
Evaluation of high voltage pulse discharge in resource processing applications:A review
16
作者 ZHANG Hong-hao YUAN Shuai +3 位作者 GAO Peng LI Yan-jun HAN Yue-xin DING Hao-yuan 《Journal of Central South University》 2025年第3期934-961,共28页
Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and ... Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development. 展开更多
关键词 resource processing high voltage pulse discharge selective fragmentation pre-weakening PRE-CONCENTRATION
在线阅读 下载PDF
A Hierarchical Task Graph Parallel Computing Framework for Chemical Process Simulation
17
作者 Shifeng Qu Shaoyi Yang +3 位作者 Wenli Du Zhaoyang Duan Feng Qian Meihong Wang 《Engineering》 2025年第8期229-239,共11页
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention... Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process. 展开更多
关键词 Parallel computing Process simulation Task graph parallelism Sequential modular approach
在线阅读 下载PDF
Hot processing parameters and microstructure evolution of as-cast Ti-6Cr-5Mo-5V-4Al alloy with millimeter-grade coarse grains
18
作者 Shi-qi GUO Liang HUANG +3 位作者 Chang-min LI Heng-jun LUO Wei XIANG Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2244-2258,共15页
Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation beh... Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation behavior and microstructure evolution of millimeter-grade coarse grains(MCGs)in the as-cast Ti-6Cr-5Mo-5V-4Al(Ti-6554)alloy were studied,and a hot processing map was established.Under compression along the rolling direction(RD),continuous dynamic recrystallization(CDRX)ensues due to the progressive rotation of subgrains within the MCGs.Along the transverse direction(TD),discontinuous dynamic recrystallization(DDRX)resulting from grain boundary bulging or bridging,occurs on the boundaries of the MCGs.With decreasing strain rate,increasing temperature,and higher deformation degree,dynamic recrystallization becomes more pronounced,resulting in a reduction in the original average grain size.The optimal processing parameters fall within a temperature range of 1050-1150℃,a strain rate of 0.01 s^(-1),and a deformation degree between 40%and 60%. 展开更多
关键词 as-cast Ti-6554 alloy millimeter-grade coarse grains deformation mechanism hot processing parameters
在线阅读 下载PDF
Feasibility study of a process for the reduction of sulfur oxides in flue gas of fluid catalytic cracking unit using the riser reactor
19
作者 Fa-Lu Dang Gang Wang +2 位作者 Jing-Cun Lian Yu Yang Mei-Jia Liu 《Petroleum Science》 2025年第2期909-924,共16页
In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatu... In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert SOxinto H_(2)S.Subsequently,H_(2)S,along with the cracked gas,is processed downstream to produce sulfur.Thermodynamic analysis of the key reduction reactions in the FCC-DeSOxprocess revealed that complete conversion of SOxto H_(2)S is feasible in the dry gas(hydrogen-rich) prelift zone,as well as the upper and lower zones of the riser,upon achieving thermodynamic equilibrium.Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent.Through process optimization,investigation of the minimum reaction time,and kinetic studies,the potential of this method for the complete reduction of SOxwas further confirmed. 展开更多
关键词 Sulfur oxides New catalytic cracking process Thermodynamic analysis Kinetic analysis Sulfur recovery
原文传递
Synergistic regulation of texture and second phases to enhance the mechanical properties and long-term corrosion resistance of friction stir processed Mg-14Gd-0.6Ce-0.5Zr alloy
20
作者 Dongzhen Wang Xiaoya Chen +4 位作者 Zheng Wu Quanan Li Hongxi Zhu Qiansen Liu Tianyao Guo 《Journal of Magnesium and Alloys》 2025年第10期4912-4932,共21页
In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematical... In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematically investigated.The results show that friction stir processing effectively refined the coarse Mg_(5)Gd phases into nanoscale second phases uniformly distributed along grain boundaries.The synergistic effect of texture weakening and second phases refinement significantly enhanced the tensile strength and elongation of the FSP-1000-120 alloy to 302.1 MPa and 18.3%,respectively,representing increases of 20.8%and 281.3%compared to the as-cast alloy.The as-cast alloy has a lower corrosion rate in the initial stage due to fewer micro-galvanic corrosion sites.However,the uniform distribution of the second phase in the FSP-treated(FSPed)alloy contributes to the formation of a more complete and dense corrosion product film.After 120 h of immersion,the as-cast alloy forms deep pits due to the continuous dissolution at the second phase-matrix interface,with the average corrosion rate increasing from 0.31 to 0.47 mL/cm^(2)/h.The long-term corrosion rates of FSP-1000-60,FSP-1000-120,and FSP-1200-120 samples are stable at 0.36,0.43,and 0.50 mL/cm^(2)/h,respectively.Research reveals that FSP regulates texture and second phase distribution to achieve synergistic strengthening of alloy strength plasticity,and the homogenization of second phase distribution is a key factor in improving the long-term corrosion resistance of alloys. 展开更多
关键词 Friction stir processing TEXTURE Second phases Mechanical properties Corrosion properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部