期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A scintillating fiber imaging spectrometer for active characterization of laser-driven proton beams
1
作者 J.K.Patel C.D.Armstrong +13 位作者 R.Wilson M.Alderton E.J.Dolier T.P.Frazer A.Horne A.Lofrese M.Peat M.Woodward B.Zielbauer R.J.Clarke R.Deas P.P.Rajeev R.J.Gray P.Mc Kenna 《High Power Laser Science and Engineering》 CSCD 2024年第6期16-27,共12页
Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications r... Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications requiring bright pulses of energetic ions. Characterizing the spectro-spatial profile of these ions at high repetition rates in the harsh radiation environments created by laser–plasma interactions remains challenging but is paramount for further source development.To address this, we present a compact scintillating fiber imaging spectrometer based on the tomographic reconstruction of proton energy deposition in a layered fiber array. Modeling indicates that spatial resolution of approximately 1 mm and energy resolution of less than 10% at proton energies of more than 20 MeV are readily achievable with existing 100 μm diameter fibers. Measurements with a prototype beam-profile monitor using 500 μm fibers demonstrate active readouts with invulnerability to electromagnetic pulses, and less than 100 Gy sensitivity. The performance of the full instrument concept is explored with Monte Carlo simulations, accurately reconstructing a proton beam with a multiple-component spectro-spatial profile. 展开更多
关键词 DIAGNOSTICS high repetition rate ion acceleration laser-solid interactions
原文传递
Laser produced electromagnetic pulses: generation, detection and mitigation 被引量:9
2
作者 Fabrizio Consoli Vladimir TTikhonchuk +32 位作者 Matthieu Bardon Philip Bradford David CCarroll Jakub Cikhardt Mattia Cipriani Robert JClarke Thomas ECowan Colin NDanson Riccardo De Angelis Massimo De Marco Jean-Luc Dubois Bertr Etchessahar Alejro Laso Garcia David IHillier Ales Honsa Weiman Jiang Viliam Kmetik Josef Krása Yutong Li FredériéLubrano Paul McKenna Josefine Metzkes-Ng Alexre Poyé Irene Prencipe Piotr Ra¸czka Rol ASmith Roman Vrana Nigel CWoolsey Egle Zemaityte Yihang Zhang Zhe Zhang Bernhard Zielbauer David Neely 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2020年第2期88-146,共59页
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe... This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications. 展开更多
关键词 electromagnetic pulses high-power lasers DIAGNOSTICS mitigation techniques
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部