期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
RF detection of split-gate modes in Si-MOS quantum dots
1
作者 Ning Chu Sheng-Kai Zhu +5 位作者 Ao-Ran Li Chu Wang Wei-Zhu Liao Gang Cao Hai-Ou Li Guo-Ping Guo 《Chinese Physics B》 2025年第4期296-302,共7页
Radio frequency(RF)reflectometry is an effective and sensitive technique for detecting charge signal in semiconductor quantum dots,and its measurement bandwidth can reach the MHz level.However,in accumulation mode dev... Radio frequency(RF)reflectometry is an effective and sensitive technique for detecting charge signal in semiconductor quantum dots,and its measurement bandwidth can reach the MHz level.However,in accumulation mode devices,the presence of parasitic capacitance makes RF reflectometry more difficult.The universal approach is relocating the ion implantation region approximately 10μm from the center of the single-electron transistor(SET)and optimizing the design of the accumulation gates.But,this method puts forward more stringent requirements for micro-nano fabrication processing.Here,we propose a split-gate structure that enables RF reflectometry when the ion-implanted region and the ohmic contact are farther from the SET center.In Si-MOS devices,we employ a split-gate structure to achieve RF detection,with the ion-implanted region located 150μm away from the center of the SET.Within an integration time of 140 nanoseconds,we achieved a readout fidelity exceeding 99.8%and a detection bandwidth of over 2 MHz.This is an alternative solution for micro-nano fabrication processing that cannot achieve ion implantation areas closer to the center of the chip,and is applicable to various silicon-based semiconductor systems. 展开更多
关键词 silicon-based quantum computing Si-MOS radio-frequency readout
原文传递
Circuit quantum electrodynamics with a quadruple quantum dot 被引量:1
2
作者 林霆 李海欧 +1 位作者 曹刚 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期150-155,共6页
In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and... In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method. 展开更多
关键词 semiconductor qubit circuit quantum electrodynamics(QED) semiconductor quantum dot scalable semiconductor-based circuit QED architectures
原文传递
Effects of Quantum Noise on Quantum Approximate Optimization Algorithm 被引量:1
3
作者 Cheng Xue Zhao-Yun Chen +1 位作者 Yu-Chun Wu Guo-Ping Guo 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第3期7-11,共5页
The quantum-classical hybrid algorithm is a promising algorithm with respect to demonstrating the quantum advantage in noisy-intermediate-scale quantum(NISQ) devices. When running such algorithms, effects due to quant... The quantum-classical hybrid algorithm is a promising algorithm with respect to demonstrating the quantum advantage in noisy-intermediate-scale quantum(NISQ) devices. When running such algorithms, effects due to quantum noise are inevitable. In our work, we consider a well-known hybrid algorithm, the quantum approximate optimization algorithm(QAOA). We study the effects on QAOA from typical quantum noise channels, and produce several numerical results. Our research indicates that the output state fidelity, i.e., the cost function obtained from QAOA, decreases exponentially with respect to the number of gates and noise strength. Moreover,we find that when noise is not serious, the optimized parameters will not deviate from their ideal values. Our result provides evidence for the effectiveness of hybrid algorithms running on NISQ devices. 展开更多
关键词 strength. QUANTUM EXPONENTIALLY
原文传递
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
4
作者 Shun-Li Jiang Tian-Yi Jiang +8 位作者 Yong-Qiang Xu Rui Wu Tian-Yue Hao Shu-Kun Ye Ran-Ran Cai Bao-Chuan Wang Hai-Ou Li Gang Cao Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期139-143,共5页
Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation.To satisfy the connectivity requirements and reduce the lithographic com... Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation.To satisfy the connectivity requirements and reduce the lithographic complexity,utilizing the qubit array structure and the circuit quantum electrodynamics(cQED)architecture together is expected to be a feasible scaling scheme.A triple-quantum dot(TQD)coupled with a superconducting resonator is regarded as a basic cell to demonstrate this extension scheme.In this article,we investigate a system consisting of a silicon TQD and a high-impedance TiN coplanar waveguide(CPW)resonator.The TQD can couple to the resonator via the right double-quantum dot(RDQD),which reaches the strong coupling regime with a charge–photon coupling strength of g0/(2p)=175 MHz.Moreover,we illustrate the high tunability of the TQD through the characterization of stability diagrams,quadruple points(QPs),and the quantum cellular automata(QCA)process.Our results contribute to fostering the exploration of silicon-based qubit integration. 展开更多
关键词 triple-quantum dot strong coupling circuit quantum electrodynamics(cQED) scalable siliconbased cQED architectures
原文传递
In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
5
作者 Hao-Ran Tao Lei Du +8 位作者 Liang-Liang Guo Yong Chen Hai-Feng Zhang Xiao-Yan Yang Guo-Liang Xu Chi Zhang Zhi-Long Jia Peng Duan Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期133-137,共5页
The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi... The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices. 展开更多
关键词 ANTI-AGING oxidation dielectric loss Nb superconducting quantum circuits
原文传递
Correction of microwave pulse reflection by digital filters in superconducting quantum circuits
6
作者 Liang-Liang Guo Peng Duan +9 位作者 Lei Du Hai-Feng Zhang Hao-Ran Tao Yong Chen Xiao-Yan Yang Chi Zhang Zhi-Long Jia Wei-Cheng Kong Zhao-Yun Chen Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期117-123,共7页
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ... Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors. 展开更多
关键词 reflection cancelation digital filter single-qubit gate superconducting circuit
原文传递
Energy shift and subharmonics induced by nonlinearity in a quantum dot system
7
作者 周圆 曹刚 +1 位作者 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期135-139,共5页
The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy ... The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy levels, subharmonic transitions and energy shifts can be observed, which would cause a significant influence as the system is applied to quantum computing. In this paper, we study a longitudinally driven singlet-triplet(ST) system in a double quantum dot(DQD)system, and illustrate the consequences of nonlinearity by driving the system close to the anticrossings. We provide a straightforward theory to quantitatively describe the energy shift and subharmonics caused by nonlinearity, and find good agreement between our theoretical result and the numerical simulation. Our results reveal the existence of nonlinearity in the vicinity of anticrossings and provide a direct way of analytically assessing its impact, which can be applied to other quantum systems without excessive labor. 展开更多
关键词 quantum dot quantum computing nonlinear physics
原文传递
Variational Quantum Algorithms for the Steady States of Open Quantum Systems
8
作者 Huan-Yu Liu Tai-Ping Sun +1 位作者 Yu-Chun Wu Guo-Ping Guo 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第8期11-16,共6页
The solutions of the problems related to open quantum systems have attracted considerable interest.We propose a variational quantum algorithm to find the steady state of open quantum systems.In this algorithm,we emplo... The solutions of the problems related to open quantum systems have attracted considerable interest.We propose a variational quantum algorithm to find the steady state of open quantum systems.In this algorithm,we employ parameterized quantum circuits to prepare the purification of the steady state and define the cost function based on the Lindblad master equation,which can be efficiently evaluated with quantum circuits.We then optimize the parameters of the quantum circuit to find the steady state.Numerical simulations are performed on the one-dimensional transverse field Ising model with dissipative channels.The result shows that the fidelity between the optimal mixed state and the true steady state is over 99%.This algorithm is derived from the natural idea of expressing mixed states with purification and it provides a reference for the study of open quantum systems. 展开更多
关键词 STATE QUANTUM MIXED
原文传递
Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
9
作者 胡睿梓 祝圣凯 +9 位作者 张鑫 周圆 倪铭 马荣龙 罗刚 孔真真 王桂磊 曹刚 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期274-279,共6页
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr... The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future. 展开更多
关键词 quantum computation quantum dot quantum state readout
原文传递
Electric field dependence of spin qubit in a Si-MOS quantum dot
10
作者 马荣龙 倪铭 +7 位作者 周雨晨 孔真真 王桂磊 刘頔 罗刚 曹刚 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期248-253,共6页
Valley, the intrinsic feature of silicon, is an inescapable subject in silicon-based quantum computing. At the spin–valley hotspot, both Rabi frequency and state relaxation rate are significantly enhanced. With prote... Valley, the intrinsic feature of silicon, is an inescapable subject in silicon-based quantum computing. At the spin–valley hotspot, both Rabi frequency and state relaxation rate are significantly enhanced. With protection against charge noise, the valley degree of freedom is also conceived to encode a qubit to realize noise-resistant quantum computing.Here, based on the spin qubit composed of one or three electrons, we characterize the intrinsic properties of valley in an isotopically enriched silicon quantum dot(QD) device. For one-electron qubit, we measure two electric-dipole spin resonance(EDSR) signals which are attributed to partial occupation of two valley states. The resonance frequencies of two EDSR signals have opposite electric field dependences. Moreover, we characterize the electric field dependence of the upper valley state based on three-electron qubit experiments. The difference of electric field dependences of the two valleys is 52.02 MHz/V, which is beneficial for tuning qubit frequency to meet different experimental requirements. As an extension of electrical control spin qubits, the opposite electric field dependence is crucial for qubit addressability,individual single-qubit control and two-qubit gate approaches in scalable quantum computing. 展开更多
关键词 silicon-based quantum computing VALLEY electric-dipole spin resonance
原文传递
The Properties of the Shear Gradient Operator and Its Application in Image Deblurring
11
作者 LIU Xiaofeng LU Lixuan ZHANG Tao 《Wuhan University Journal of Natural Sciences》 2025年第5期427-440,共14页
The utilization of gradient operators is prevalent in image processing,as they effectively detect edges and provide directional information.However,these operators only differentiate the horizontal and vertical direct... The utilization of gradient operators is prevalent in image processing,as they effectively detect edges and provide directional information.However,these operators only differentiate the horizontal and vertical directions,ignoring details and causing loss of informa-tion in other directions.This paper introduces the shear gradient operator to overcome this limitation by capturing details accurately in mul-tiple directions.It investigates the properties of the shear gradient operator and proposes the shear total variation(STV)norm for image de-blurring.By combining non-convex regularization to avoid excessive penalty and retain image details,a novel deblurring model integrat-ing the STV norm and the L1/L2 minimization is proposed.The alternating direction method of multipliers(ADMM)algorithm is employed to solve this computationally challenging model,demonstrating exceptional performance in non-blind image deblurring through experi-ments. 展开更多
关键词 shear gradient operator shear total variation norm image deblurring alternating direction method of multipliers(ADMM) L1/L2 minimization
原文传递
Huffman-Code-Based Ternary Tree Transformation
12
作者 Qing-Song Li Huan-Yu Liu +2 位作者 Qingchun Wang Yu-Chun Wu Guo-Ping Guo 《Chinese Physics Letters》 2025年第10期1-12,共12页
Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations a... Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems. 展开更多
关键词 quantum computer weighted pauli weightwhich Huffman code based ternary tree transformation simulate fermionic systems fermion qubit transformations characterize circuit depth hamiltonian termsin fermionic systems
原文传递
Electrically Tunable Graphene Nanomechanical Resonators
13
作者 Yibo Wang Zhuozhi Zhang +4 位作者 Chenxu Wu Yushi Zhang Guosheng Lei Xiangxiang Song Guoping Guo 《Chinese Physics Letters》 2025年第7期467-488,共22页
The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface... The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators. 展开更多
关键词 gate electrodesit NONLINEARITIES resonant frequencies electrical gating quality factors mechanical properties nanomechanical resonators electrically tunable
原文传递
Acoustic detection of high-resistance states in gated bilayer graphene devices
14
作者 Guo-Quan Qin Yi-Bo Wang +3 位作者 Guo-Sheng Lei Zhuo-Zhi Zhang Xiang-Xiang Song Guo-Ping Guo 《Chinese Physics B》 2025年第9期490-494,共5页
Applying a perpendicular electric field to bilayer graphene(BLG)induces an electrically tunable bandgap,so that insulating states with resistances exceeding~10^(8)Ωcan be generated.These high-resistance states pinch ... Applying a perpendicular electric field to bilayer graphene(BLG)induces an electrically tunable bandgap,so that insulating states with resistances exceeding~10^(8)Ωcan be generated.These high-resistance states pinch off the conducting channel,thereby enabling high-quality gated devices for classical and quantum electronics.However,it is challenging to precisely quantify these states electrically due to their high resistances,especially when different areas of the device are operated in different high-resistance states.Here,taking advantage of the strong acoustoelectric effect,we demonstrate the detection of these high-resistance states in a multi-gated BLG device using surface acoustic waves.Under different gating configurations,the device is operated in different high-resistance states.Although these states have similar resistances of~10^(8)Ω,we show their acoustoelectric responses exhibit pronounced differences,thereby allowing the acoustic detection.More interestingly,we demonstrate that when the conducting channel is pinched off by one top gate,we are still able to acoustically,but not electrically,detect the gating effect of another top gate.Our results reveal the powerful capability and the promising future of acoustically characterizing BLG and other two-dimensional materials,especially their electronic states with high resistances. 展开更多
关键词 bilayer graphene surface acoustic waves acoustoelectric effects high-resistance states
原文传递
Impact of surface passivation on the electrical stability of strained germanium devices
15
作者 Zong-Hu Li Mao-Lin Wang +10 位作者 Zhen-Zhen Kong Gui-Lei Wang Yuan Kang Yong-Qiang Xu Rui Wu Tian-Yue Hao Ze-Cheng Wei Bao-Chuan Wang Hai-Ou Li Gang Cao Guo-Ping Guo 《Chinese Physics B》 2025年第9期66-71,共6页
Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the... Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability. 展开更多
关键词 HOLE strained germanium interface trap STABILITY surface passivation
原文传递
Correcting on-chip distortion of control pulses with silicon spin qubits
16
作者 Ming Ni Rong-Long Ma +10 位作者 Zhen-Zhen Kong Ning Chu Wei-Zhu Liao Sheng-Kai Zhu Chu Wang Gang Luo Di Liu Gang Cao Gui-Lei Wang Hai-Ou Li Guo-Ping Guo 《Chinese Physics B》 2025年第1期265-271,共7页
In semiconductor quantum dot systems,pulse distortion is a significant source of coherent errors,which impedes qubit characterization and control.Here,we demonstrate two calibration methods using a two-qubit system as... In semiconductor quantum dot systems,pulse distortion is a significant source of coherent errors,which impedes qubit characterization and control.Here,we demonstrate two calibration methods using a two-qubit system as the detector to correct distortion and calibrate the transfer function of the control line.Both methods are straightforward to implement,robust against noise,and applicable to a wide range of qubit types.The two methods differ in correction accuracy and complexity.The first,coarse predistortion(CPD)method,partially mitigates distortion.The second,all predistortion(APD)method,measures the transfer function and significantly enhances exchange oscillation uniformity.Both methods use exchange oscillation homogeneity as the metric and are suitable for any qubit driven by a diabatic pulse.We believe these methods will enhance qubit characterization accuracy and operation quality in future applications. 展开更多
关键词 quantum computation quantum dot pulse distortion
原文传递
Coherent manipulation of a tunable hybrid qubit via microwave control 被引量:1
17
作者 顾思思 王保传 +2 位作者 李海欧 曹刚 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期409-414,共6页
Hybrid qubits enable the hybridization of charge and spin degrees of freedom,which provides a way to realize both a relatively long coherence time and rapid qubit manipulation.Here,we use microwave driving to demonstr... Hybrid qubits enable the hybridization of charge and spin degrees of freedom,which provides a way to realize both a relatively long coherence time and rapid qubit manipulation.Here,we use microwave driving to demonstrate the coherent operation of a tunable hybrid qubit,including X-rotation,Z-rotation,and rotation around an arbitrary axis in the X-Y panel of the Bloch sphere.Moreover,the coherence properties of the qubit and its tunability are studied.The measured coherence time of the X-rotation reaches~14.3 ns.While for the Z-rotation,the maximum decoherence time is~5.8 ns due to the larger sensitivity to noise.By employing the Hahn echo sequence to mitigate the influence of the low-frequency noise,we have improved the qubit coherence time from~5.8 ns to~15.0 ns.Our results contribute to a further understanding of the hybrid qubit and a step towards achieving high-fidelity qubit gates in the hybrid qubit. 展开更多
关键词 semiconductor quantum dot hybrid qubit qubit operation microwave control
原文传递
Micro-scale photon source in a hybrid cQED system
18
作者 Ming-Bo Chen Bao-Chuan Wang +4 位作者 Si-Si Gu Ting Lin Hai-Ou Li Gang Cao Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期92-96,共5页
Conerent photon source is an important element that has been widely used in spectroscopy,imaging,detection,and teleportation in quantum optics.However,it is still a challenge to realize micro-scale coherent emitters i... Conerent photon source is an important element that has been widely used in spectroscopy,imaging,detection,and teleportation in quantum optics.However,it is still a challenge to realize micro-scale coherent emitters in semiconductor systems.We report the observation of gain in a cavity-coupled GaAs double quantum dot system with a voltage bias across the device.By characterizing and analyzing the cavity responses to different quantum dot behaviors,we distinguish the microwave photon emission from the signal gain.This study provides a possibility to realize micro-scale amplifiers or coherent microwave photon sources in circuit quantum electrodynamics(cQED) hybrid systems. 展开更多
关键词 SQUID array resonator double quantum dot electron-photon coupling photon emission
原文传递
In situ non-destructive measurement of Josephson junction resistance using fritting contact technique
19
作者 Lei Du Hao-Ran Tao +7 位作者 Liang-Liang Guo Hai-Feng Zhang Yong Chen Xin Tian Chi Zhang Zhi-Long Jia Peng Duan Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期57-61,共5页
Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films,making them unsuitable for frequency measurements of superconducting qubits.In this study,we pr... Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films,making them unsuitable for frequency measurements of superconducting qubits.In this study,we present a custom probe station measurement system that employs the fritting contact technique to achieve in situ,non-destructive measurements of Josephson junction resistance.Our experimental results demonstrate that this method allows for accurate prediction of qubit frequency with an error margin of 17.2 MHz.Moreover,the fritting contact technique does not significantly affect qubit coherence time or the integrity of the superconducting film,confirming its non-destructive nature.This innovative approach provides a dependable foundation for frequency tuning and addressing frequency collision issues,thus supporting the advancement and practical deployment of superconducting quantum computing. 展开更多
关键词 NON-DESTRUCTIVE fritting contact qubit frequency Josephson junction resistance
原文传递
Fast and perfect state transfer in superconducting circuit with tunable coupler
20
作者 张驰 王天乐 +5 位作者 赵泽安 杨小燕 郭亮亮 贾志龙 段鹏 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期247-251,共5页
In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essentia... In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing. 展开更多
关键词 quantum state transfer superconducting circuit tunable coupler
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部