期刊文献+
共找到3,662篇文章
< 1 2 184 >
每页显示 20 50 100
Nanowatt-level optoelectronic GaN-based heterostructure artificial synaptic device for associative learning and neuromorphic computing 被引量:1
1
作者 Teng Zhan Jianwen Sun +6 位作者 Jin Lin Banghong Zhang Guanwan Liao Zewen Liu Junxi Wang Jinmin Li Xiaoyan Yi 《Journal of Semiconductors》 2025年第2期114-120,共7页
In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototra... In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototransistor is fabricated and measured,integrating a TiO_(2)nanolayer gate and a two-dimensional electron gas(2DEG)channel to mimic the synaptic weight and the synaptic cleft,respectively.The maximum drain to source current is 10 nA,while the device is driven at a reverse bias not exceeding-2.5 V.A excitatory postsynaptic current(EPSC)of 200 nA can be triggered by a 365 nm UVA light spike with the duration of 1 s at light intensity of 1.35μW·cm^(-2).Multiple synaptic neuromorphic functions,including EPSC,short-term/long-term plasticity(STP/LTP)and paried-pulse facilitation(PPF),are effectively mimicked by our GaN-based het-erostructure synaptic device.In the typical Pavlov’s dog experiment,we demonstrate that the device can achieve"retraining"process to extend memory time through enhancing the intensity of synaptic weight,which is similar to the working mecha-nism of human brain. 展开更多
关键词 GAN HETEROSTRUCTURE neuromorphic SYNAPTIC OPTOELECTRONIC phototransisitor pavlov
在线阅读 下载PDF
In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries 被引量:1
2
作者 Guyue Li Zhenguo Yao Chilin Li 《Journal of Energy Chemistry》 2025年第6期44-53,I0002,共11页
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me... Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs. 展开更多
关键词 Vanadium pentoxide cathode Electrolyte additive Solvation structure Interface manipulation Magnesium metal batteries
在线阅读 下载PDF
Ligand rigidity-mediated coordination symmetry engineering in lanthanide-titanium nanoclusters achieves>90%photoluminescence quantum yield
3
作者 Xinran Yan Ming Zhao +7 位作者 Feng Jiang Haifeng Zhu Weinan Dong Shengrong He Jingjing Xia Meixin Hong Zhennan Wu Xue Bai 《Journal of Rare Earths》 2025年第8期1590-1600,I0001,共12页
Achieving high-efficiency photoluminescence in trivalent lanthanides(Ln^(3+))requires precise crystalfield perturbation to overcome parity-forbidden 4f-transitions and suppress nonradiative decay.However,realizing suc... Achieving high-efficiency photoluminescence in trivalent lanthanides(Ln^(3+))requires precise crystalfield perturbation to overcome parity-forbidden 4f-transitions and suppress nonradiative decay.However,realizing such control remains challenging,even in well-optimized Ln^(3+) -doped nanocrystals.Here,by exploiting the atomically precise structure of metal nanoclusters,we demonstrate symmetry engineering in the Eu_(2)Ti_(4) nanoclusters through stepwise ligand substitution(BA/Phen→FBA/Phen→FBA/Bpy.BA:benzoicacid;Phen:1,10-phenanthroline;FBA:p-fluorobenzoicacid;Bpy:2,2'-bipyridine).The incorporation of FBA effectively suppresses nonradiative relaxation,while the flexible Bpy ligand induces symmetry reduction from D_(2d) to C_(2v) through coordination modulation,yielding a high photoluminescence quantum yield(PLQY)of 91.2%in the Ln^(3+) cluster systems.The transient-absorption,Judd-Ofelt theory,crystal-field analysis,and temperature-dependent photophysical studies elucidated the underlying modulation mechanisms.Furthermore,these clusters exhibit promising potential for optoelectronic applications,offering a new design strategy for high-performance luminescent materials. 展开更多
关键词 NANOCLUSTERS Coordination symmetry Lattice modulation PHOTOLUMINESCENCE Rare earths
原文传递
Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes
4
作者 Xinyun Xiong Sichen Jiao +6 位作者 Qinghua Zhang Luyao Wang Kun Zhou Bowei Cao Xilin Xu Xiqian Yu Hong Li 《Chinese Physics B》 2025年第5期178-188,共11页
Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through s... Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through synergistic anionic and cationic redox reactions.However,these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading.To address these issues,strategies such as surface modification and bulk phase engineering have been explored.In this study,we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics.Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure,thereby enhancing the structural stability.Concurrently,Li^(+)/H^(+)exchange at the surface forms a robust rock-salt/spinel passivation layer,effectively suppressing oxygen evolution and mitigating interfacial side reactions.This dual modification strategy demonstrates a synergistic stabilization effect.The enhanced oxygen redox activity coexists with the improved structural integrity,leading to superior electrochemical performance.The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12%capacity retention after 200 cycles at 1 C.This study presents a straightforward and economical strategy for concurrent surface–bulk modification,offering valuable insights for designing high-capacity LRM cathodes with extended cycle life. 展开更多
关键词 lithium-rich manganese-based cathodes surface-bulk engineering oxygen redox activity highcapacity cathodes long-cycle stability
原文传递
Realizing high power factor in p-type BiSbTe flexible thin films via carrier engineering
5
作者 Dong-Wei Ao Bo Wu +2 位作者 Wei-Di Liu Xiang-Bo Shen Wen-Qing Wei 《Rare Metals》 2025年第2期1222-1230,共9页
Flexible thermoelectric thin films offer a promising avenue for the development of portable and sustainable flexible power supplies.However,a lack of thin films with excellent performance restricts their application i... Flexible thermoelectric thin films offer a promising avenue for the development of portable and sustainable flexible power supplies.However,a lack of thin films with excellent performance restricts their application in flexible thermoelectric devices.In this study,high-performance BiSbTe films are successfully prepared using a combination of magnetron sputtering and thermal diffusion.By optimizing carrier concentration to~4.47×10^(19)cm^(−3)and simultaneously realizing high carrier mobility of>120 cm^(2)·V^(−1)·s^(−1),an impressive room-temperature power factor of 24.13μW·cm^(−1)·K^(−2)is achieved in a Bi_(0.4)Sb_(1.6)Te_(3)thin film.The flexible Bi_(0.4)Sb_(1.6)Te_(3)thin film also demonstrates excellent bending resistance and stability(ΔR/R_(0)<5%,ΔS/S_(0)<5%,andΔS^(2)σ/S_(0)^(2)σ_(0)<10%)after 1000 bending cycles at a minimum bending radius of 6 mm.A flexible thin-film thermoelectric device assembled with p-type Bi_(0.4)Sb_(1.6)Te_(3)legs achieves a remarkable power output of~82.15 nW and a power density of~547.68μW·cm^(−2)under a temperature difference of 20 K. 展开更多
关键词 Thermoelectric performance Flexible thin film DEVICE BiSbTe
原文传递
Regulating crystallization and retarding oxidation in Sn-Pb perovskite via 1D cation engineering for high performance all-perovskite tandem solar cells
6
作者 Ranran Liu Xin Zheng +10 位作者 Zaiwei Wang Miaomiao Zeng Chunxiang Lan Shaomin Yang Shangzhi Li Awen Wang Min Li Jing Guo Xuefei Weng Yaoguang Rong Xiong Li 《Journal of Energy Chemistry》 2025年第1期646-652,共7页
All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2... All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2+)to Sn^(4+)and uncontrolled crystallization kinetics in Sn-Pb perovskites,leading to nonradiative recombination and compositional heterogeneity to decrease photovoltaic efficiency and operational stability.Herein,we introduced an ionic liquid additive,1-ethyl-3-methylimidazolium iodide (EMIMI) into Sn-Pb perovskite precursor to form low-dimensional Sn-rich/pure-Sn perovskites at grain boundaries,which mitigates oxidation of Sn^(2+)to Sn^(4+)and regulates the film-forming dynamics of Sn/Pb-based perovskite films.The optimized single-junction Sn-Pb perovskite devices incorporating EMIMI achieved a high efficiency of 22.87%.Furthermore,combined with wide-bandgap perovskite sub-cells in tandem device,we demonstrate 2-terminal all-perovskite tandem solar cells with a power conversion efficiency of 28.34%,achieving improved operational stability. 展开更多
关键词 All-perovskite tandem solar cells Sn-Pb perovskite 1D Regulated crystallization ANTIOXIDATION
在线阅读 下载PDF
Silicon-based optoelectronic heterogeneous integration for optical interconnection 被引量:2
7
作者 李乐良 李贵柯 +5 位作者 张钊 刘剑 吴南健 王开友 祁楠 刘力源 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期1-9,共9页
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ... The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on. 展开更多
关键词 silicon-based heterogeneous integration heterogeneous integrated materials heterogeneous integrated packaging optical interconnection
原文传递
Engineering FeOOH/Ni(OH)_(2) heterostructures on Ni_(3)S_(2)surface to enhance seawater splitting
8
作者 Chen Yang Ya-Dong Li +2 位作者 Li-Juan Cao Xi-Long Wang Han-Pu Liang 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期1989-1998,共10页
The construction of highly stable and efficient electrocatalysts is desirable for seawater splitting but remains challenging due to the high concentration of Cl-in seawater.Herein,FeOOH/Ni(OH)_(2)heterostructure suppo... The construction of highly stable and efficient electrocatalysts is desirable for seawater splitting but remains challenging due to the high concentration of Cl-in seawater.Herein,FeOOH/Ni(OH)_(2)heterostructure supported on Ni_(3)S_(2)-covered nickel foam(Fe–Ni/Ni_(3)S_(2)/NF)was fabricated by hydrothermal and etching methods,as well as anodic oxidation process.The electronic structure of FeOOH and Ni(OH)_(2)could be modulated after depositing FeOOH nanoparticles on Ni(OH)_(2)nanosheet,which greatly boosted the catalytic activity.When the catalyst used as an electrode for oxygen evolution reaction(OER),it needed low overpotentials of 266 and 368 m V to achieve current densities of 100 and 800 m A·cm^(-2),respectively,in 1 mol·L^(-1)KOH+seawater electrolyte.It can operate continuously at 100 m A·cm^(-2)for 400 h without obvious decay.Particularly,in situ generated SO_(4)^(2-)from inner Ni_(3)S_(2)during electrolysis process would accumulate on the surface of active sites to form passivation layers to repel Cl^(-),which seemed to be responsible for superior stability.The study not only synthesizes an OER catalyst for highly selective and stable seawater splitting,but also gives a novel approach for industrial hydrogen production. 展开更多
关键词 Anodic oxidation HETEROSTRUCTURE Oxygen evolution reaction Seawater splitting
原文传递
Floquet-Engineering Topological Phase Transition in Graphene Nanoribbons by Light
9
作者 Anhua Huang Shasha Ke +2 位作者 Ji-Huan Guan Jun Li Wen-Kai Lou 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期69-87,共19页
Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases def... Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases defined by a Z_(2) invariant.By employing both the tight-binding model and the Floquet theory,our investigation demonstrates the effective control of the topological phase within quasi-1D armchair GNRs(AGNRs)using elliptically polarized light,unveiling rich topological phase diagrams.Specifically,we observe that varying the amplitude of the light can induce transitions in the band gap(E_(g))of AGNRs,leading to multiple changes in the system’s Z_(2) invariant.Furthermore,for heterojunctions composed of different AGNR segments,the junction state can be either created or eliminated by the application of elliptically polarized light. 展开更多
关键词 TOPOLOGICAL POLARIZED TRANSITION
原文传递
Lewis base multisite ligand engineering in efficient and stable perovskite solar cells
10
作者 Danqing Ma Dongmei He +8 位作者 Qing Zhu Xinxing Liu Yue Yu Xuxia Shai Zhengfu Zhang Sam Zhang Jing Feng Jianhong Yi Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期277-291,共15页
Perovskite solar cells(PSCs) have stood out from many photovoltaic technologies due to their flexibility,cost-effectiveness and high-power conversion efficiency(PCE). Nevertheless, the further development of PSCs is g... Perovskite solar cells(PSCs) have stood out from many photovoltaic technologies due to their flexibility,cost-effectiveness and high-power conversion efficiency(PCE). Nevertheless, the further development of PSCs is greatly hindered by the trap-induced non-radiative recombination losses and poor long-term work stability. In the past decade, the huge advancements have been obtained on suppressing nonradiative recombination and enhancing device durability. Among them, the multisite ligands(MSLs) engineering plays a crucial role in precise control and directional modification of functional layers and interfaces,which contributes to markedly increased PCE and lifetimes of PSCs. In view of this, this review summarizes the advances of MSLs in PSCs. From the perspective of functional groups and chemical interaction,the modulation mechanisms of properties of different functional layers and interfaces and device performance via various MSLs are deeply investigated and revealed. Finally, the prospects for the application and development direction of MSLs in PSCs are legitimately proposed. 展开更多
关键词 Perovskite solar cells Multisite ligands Defect passivation Ion migration suppression Stability
在线阅读 下载PDF
Unlocking enhanced photo-Fenton,night-Fenton,and photocatalytic activities of dual Z-scheme MoS_(2)/WO_(3-x)/Ag_(2)S core-shell structure via defect engineering
11
作者 Muhammad Abbas Kashif Hussain +5 位作者 Navid Hussain Shah Mubashar Ilyas Rabia Batool M.Ashfaq Ahmad Yanyan Cui Yaling Wang 《Journal of Materials Science & Technology》 CSCD 2024年第30期160-170,共11页
Memory catalysis and conventional Fenton reactions are intended to counteract prevailing energy and environmental crises;however,poor performance and the need for UV irradiation question their sustain-ability.Herein,w... Memory catalysis and conventional Fenton reactions are intended to counteract prevailing energy and environmental crises;however,poor performance and the need for UV irradiation question their sustain-ability.Herein,we demonstrate defect-engineered,dual Z-scheme MoS_(2)/WO_(3-x)/Ag_(2)S exhibiting enhanced photo-Fenton(PFR),night-Fenton(NFR),and photocatalytic activities(PR)against tetracycline(TC)and Rhodamine B(RhB).Defects enable the catalyst to store ample electrons just like metals,which play a vi-tal role by exciting H2 O2 during Fenton reactions.It removed 91.54%,76.43%,and 83.39%TC(40 mg L^(-1))in 100 min and registered degradation rate constants of 0.05379,0.02858,and 0.04133 min^(-1)against RhB(20 mg L^(-1))during PFR,NFR,and PR respectively.The total organic carbon(TOC)removal rates reached 58.56%and 60.88%during TC and RhB degradations in PFR,respectively.Solid and Liquid EPR analy-sis shows it can excite H_(2)O_(2)to carry Fenton reactions with and without light.It demonstrates wide pH adaptability and tremendous potential to simultaneously counter energy and environmental crises. 展开更多
关键词 Fenton reaction Photolysis Core-shell Dual Z-scheme TC WO_(3-x)
原文传递
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
12
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
13
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Mechanical and electrochemical properties of(MoNbTaTiZr)1-x Nx high-entropy nitride coatings 被引量:2
14
作者 Wei Yang Jianxiao Shen +3 位作者 Zhenyu Wang Guanshui Ma Peiling Ke Aiying Wang 《Journal of Materials Science & Technology》 2025年第5期78-91,共14页
High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitr... High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance. 展开更多
关键词 High-entropy nitride Magnetron sputtering Microstructure Mechanical property Corrosion behavior
原文传递
Variety classification and identification of maize seeds based on hyperspectral imaging method 被引量:1
15
作者 XUE Hang XU Xiping MENG Xiang 《Optoelectronics Letters》 2025年第4期234-241,共8页
In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering... In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds. 展开更多
关键词 feature extraction extract feature wavelengthsclassification models variety classification hyperspectral imaging combined preprocessing competitive adaptive reweighted sampling cars successive projections algorithm spa PREPROCESSING maize seeds
原文传递
The Collaborative Development of Sensors and Artificial Intelligence 被引量:1
16
作者 Shangchun Fan Feiyang Zhang Yufu Qu 《Instrumentation》 2025年第1期1-10,共10页
Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national ec... Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national economy and the people's livelihood,such as national defense security and the development of new quality productive forces.This paper provides a comprehensive survey of how sensors should adapt to the current upsurge of artificial intelligence,analyzing their technical connotations,application characteristics,and inherent limitations.Furthermore,with a sensor-oriented mindset,it is proposed that sensors will dominate information technology,upgrade connotations,advance ubiquitous bionic intelligence and engage in a"symbiotic dance"with artificial intelligence.This overview provides a promising direction for the higher-level development of sensors and artificial intelligence. 展开更多
关键词 SENSOR artificial intelligence information technology new quality productive forces collaborative development
原文传递
Electropolymerized dopamine-based memristors using threshold switching behaviors for artificial current-activated spiking neurons 被引量:1
17
作者 Bowen Zhong Xiaokun Qin +4 位作者 Zhexin Li Yiqiang Zheng Lingchen Liu Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第2期98-103,共6页
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us... Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems. 展开更多
关键词 ELECTROPOLYMERIZATION POLYDOPAMINE MEMRISTOR threshold switching spiking voltage artificial neuron
在线阅读 下载PDF
Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization 被引量:1
18
作者 Yi Zheng Hao-Ran Zhang +5 位作者 Xiao-Wei Li You-Ran Zhao Zhao-Song Li Ye-Hao Hou Chao Liu Qiong-Hua Wang 《Opto-Electronic Advances》 2025年第6期4-15,共12页
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution... Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest. 展开更多
关键词 compound-eye camera ZOOM high resolution collaborative optimization
在线阅读 下载PDF
Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge 被引量:1
19
作者 Tao Liu Miao-Ling Lin +4 位作者 Da Meng Xin Cong Qiang Kan Jiang-Bin Wu Ping-Heng Tan 《Chinese Physics B》 2025年第1期180-187,共8页
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the... Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices. 展开更多
关键词 polarized Raman spectroscopy EDGE enhanced Raman scattering spatial translational symmetry breaking electromagnetic field redistribution finite-difference time-domain simulation
原文传递
Recent development of flexible perovskite solar cells and its potential applications to aerospace 被引量:1
20
作者 Shaoqi Bian Guangshu Xu +4 位作者 Shufang Zhang Qi Jiang Xiaoguang Ma Jingbi You Xinbo Chu 《Journal of Semiconductors》 2025年第5期20-28,共9页
Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent ... Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage. 展开更多
关键词 flexible perovskite solar cells power-conversion efficiency stability aerospace application potential
在线阅读 下载PDF
上一页 1 2 184 下一页 到第
使用帮助 返回顶部