A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is ...A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is linked to the Korea Operational Oceanographic System(KOOS)developed by Park et al.(2015).The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions,which is sufficient to resolve short waves and dominant sea states.The total number of grid points exceeds 16 millions,making the model computational expensive.To provide real-time forecasting,an interpolation method,which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary,was used.A total of 45 cases were pre-calculated,which took 71 days on 924 computational cores of a Linux cluster system.Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS.SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system.To verify the model,wave observations were conducted at three locations inside the port in a time period of more than 7 months.A model/model comparison between FUNWAVE-TVD and SWAN was also carried out.It is found that,FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction,as well as large wave heights caused by wave reflections inside the port.展开更多
The Maenggol Channel and Uldolmok Strait, located on the south-west coast of Korea, have notably strong and complex currents due to tidal effects and to local geological factors. In these areas, electric power has bee...The Maenggol Channel and Uldolmok Strait, located on the south-west coast of Korea, have notably strong and complex currents due to tidal effects and to local geological factors. In these areas, electric power has been generated using strong tidal currents, the speed of which is more than 3 m/s during spring tides. The region also provides a shortcut for navigation. These tidal conditions are therefore sometimes useful, but may also cause terrible accidents or severe economic damage, in the absence of accurate information regarding ocean conditions. In April 2014, the passenger ferry MV Sewol capsized in the Maenggol Channel, with 295 passengers killed and 9 still missing. While this was unquestionably a man-made disaster, strong currents were one of the contributing causes. It was also difficult to conduct scuba diving rescue operations given strong current speeds,and accurate prediction of the time when the tide would turn was thus critically needed. In this research, we used the high-resolution coastal circulation forecasting system of KOOS(Korea Operational Oceanographic System) for analysis and simulation of strong tidal currents in such areas with many small islands, using measurements and modeling from this research area. For accurate prediction of tidal currents, small grid size-modeling was needed,and in this study, we identified a suitable grid size that offers efficiency as well as accuracy.展开更多
基金The Project of Development on Technology for Offshore Waste Final Disposalthe Project of Investigation of Large Swell Waves and Rip Currents and Development of the Disaster Response System
文摘A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is linked to the Korea Operational Oceanographic System(KOOS)developed by Park et al.(2015).The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions,which is sufficient to resolve short waves and dominant sea states.The total number of grid points exceeds 16 millions,making the model computational expensive.To provide real-time forecasting,an interpolation method,which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary,was used.A total of 45 cases were pre-calculated,which took 71 days on 924 computational cores of a Linux cluster system.Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS.SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system.To verify the model,wave observations were conducted at three locations inside the port in a time period of more than 7 months.A model/model comparison between FUNWAVE-TVD and SWAN was also carried out.It is found that,FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction,as well as large wave heights caused by wave reflections inside the port.
基金The Ministry of Oceans and Fisheries of Korea-"Development of Korea Operational Oceanographic System(KOOS)"and"Cooperative Project on Korea-China Bilateral Committee on Ocean Science"the Korea Institute of Ocean Science and Technology Project of the under contract No.PE99325the CKJORC-"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"
文摘The Maenggol Channel and Uldolmok Strait, located on the south-west coast of Korea, have notably strong and complex currents due to tidal effects and to local geological factors. In these areas, electric power has been generated using strong tidal currents, the speed of which is more than 3 m/s during spring tides. The region also provides a shortcut for navigation. These tidal conditions are therefore sometimes useful, but may also cause terrible accidents or severe economic damage, in the absence of accurate information regarding ocean conditions. In April 2014, the passenger ferry MV Sewol capsized in the Maenggol Channel, with 295 passengers killed and 9 still missing. While this was unquestionably a man-made disaster, strong currents were one of the contributing causes. It was also difficult to conduct scuba diving rescue operations given strong current speeds,and accurate prediction of the time when the tide would turn was thus critically needed. In this research, we used the high-resolution coastal circulation forecasting system of KOOS(Korea Operational Oceanographic System) for analysis and simulation of strong tidal currents in such areas with many small islands, using measurements and modeling from this research area. For accurate prediction of tidal currents, small grid size-modeling was needed,and in this study, we identified a suitable grid size that offers efficiency as well as accuracy.