期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fusion of deep learning and machine learning methods for hourly locational marginal price forecast in power systems
1
作者 Matin Farhoumandi Sheida Bahramirad +5 位作者 Ahmed Alabdulwahab Mohammad Shahidehpour Farrokh Rahimi Ali Ipakchi Farrokh Albuyeh Sasan Mokhtari 《iEnergy》 2025年第3期193-204,共12页
In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hour... In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hourly locational marginal prices(LMPs)is caused by several factors,including weather data,hourly gas prices,historical hourly loads,and market prices.In addition,variations of non-conforming net loads,which are affected by behind-the-meter distributed energy resources(DERs)and retail customer loads,could have a major impact on the volatility of hourly LMPs,as bulk grid operators have limited visibility of such retail-level resources.We propose a fusion forecasting model for the STPLF,which uses machine learning and deep learning methods to forecast non-conforming loads and respective hourly prices.Additionally,data preprocessing and feature extraction are used to increase the accuracy of the STPLF.The proposed STPLF model also includes a post-processing stage for calculating the probability of hourly LMP spikes.We use a practical set of data to analyze the STPLF results and validate the proposed probabilistic method for calculating the LMP spikes. 展开更多
关键词 Locational marginal price forecasting machine learning deep learning non-conforming net loads probability of price spikes
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部