In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hour...In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hourly locational marginal prices(LMPs)is caused by several factors,including weather data,hourly gas prices,historical hourly loads,and market prices.In addition,variations of non-conforming net loads,which are affected by behind-the-meter distributed energy resources(DERs)and retail customer loads,could have a major impact on the volatility of hourly LMPs,as bulk grid operators have limited visibility of such retail-level resources.We propose a fusion forecasting model for the STPLF,which uses machine learning and deep learning methods to forecast non-conforming loads and respective hourly prices.Additionally,data preprocessing and feature extraction are used to increase the accuracy of the STPLF.The proposed STPLF model also includes a post-processing stage for calculating the probability of hourly LMP spikes.We use a practical set of data to analyze the STPLF results and validate the proposed probabilistic method for calculating the LMP spikes.展开更多
基金funded in part by Grant No.DF-091-135-1441 from the Deanship of Scientific Research(DSR)at King Abdulaziz University in Saudi Arabia.
文摘In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hourly locational marginal prices(LMPs)is caused by several factors,including weather data,hourly gas prices,historical hourly loads,and market prices.In addition,variations of non-conforming net loads,which are affected by behind-the-meter distributed energy resources(DERs)and retail customer loads,could have a major impact on the volatility of hourly LMPs,as bulk grid operators have limited visibility of such retail-level resources.We propose a fusion forecasting model for the STPLF,which uses machine learning and deep learning methods to forecast non-conforming loads and respective hourly prices.Additionally,data preprocessing and feature extraction are used to increase the accuracy of the STPLF.The proposed STPLF model also includes a post-processing stage for calculating the probability of hourly LMP spikes.We use a practical set of data to analyze the STPLF results and validate the proposed probabilistic method for calculating the LMP spikes.