期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Record High Temperatures in the Ocean in 2024
1
作者 Lijing CHENG John ABRAHAM +51 位作者 Kevin E.TRENBERTH James REAGAN Huai-Min ZHANG Andrea STORTO Karina VON SCHUCKMANN Yuying PAN Yujing ZHU Michael E.MANN Jiang ZHU Fan WANG Fujiang YU Ricardo LOCARNINI John FASULLO Boyin HUANG Garrett GRAHAM Xungang YIN Viktor GOURETSKI Fei ZHENG Yuanlong LI Bin ZHANG Liying WAN Xingrong CHEN Dakui WANG Licheng FENG Xiangzhou SONG Yulong LIU Franco RESEGHETTI Simona SIMONCELLI Gengxin CHEN Rongwang ZHANG Alexey MISHONOV Zhetao TAN Wangxu WEI Huifeng YUAN Guancheng LI Qiuping REN Lijuan CAO Yayang LU Juan DU Kewei LYU Albertus SULAIMAN Michael MAYER Huizan WANG Zhanhong MA Senliang BAO Henqian YAN Zenghong LIU Chunxue YANG Xu LIU Zeke HAUSFATHER Tanguy SZEKELY Flora GUES 《Advances in Atmospheric Sciences》 2025年第6期1092-1109,共18页
Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temper... Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temperature(SST) and upper2000 m ocean heat content(OHC) reached unprecedented highs in the historical record. The 0–2000 m OHC in 2024exceeded that of 2023 by 16 ± 8 ZJ(1 Zetta Joules = 1021 Joules, with a 95% confidence interval)(IAP/CAS data), which is confirmed by two other data products: 18 ± 7 ZJ(CIGAR-RT reanalysis data) and 40 ± 31 ZJ(Copernicus Marine data,updated to November 2024). The Indian Ocean, tropical Atlantic, Mediterranean Sea, North Atlantic, North Pacific, and Southern Ocean also experienced record-high OHC values in 2024. The global SST continued its record-high values from2023 into the first half of 2024, and declined slightly in the second half of 2024, resulting in an annual mean of 0.61°C ±0.02°C(IAP/CAS data) above the 1981–2010 baseline, slightly higher than the 2023 annual-mean value(by 0.07°C ±0.02°C for IAP/CAS, 0.05°C ± 0.02°C for NOAA/NCEI, and 0.06°C ± 0.11°C for Copernicus Marine). The record-high values of 2024 SST and OHC continue to indicate unabated trends of global heating. 展开更多
关键词 ocean heat content sea surface temperature ocean temperature global warming CLIMATE
在线阅读 下载PDF
New Record Ocean Temperatures and Related Climate Indicators in 2023 被引量:1
2
作者 Lijing CHENG John ABRAHAM +31 位作者 Kevin E.TRENBERTH Tim BOYER Michael EMANN Jiang ZHU Fan WANG Fujiang YU Ricardo LOCARNINI John FASULLO Fei ZHENG Yuanlong LI Bin ZHANG Liying WAN Xingrong CHEN Dakui WANG Licheng FENG Xiangzhou SONG Yulong LIU Franco RESEGHETTI Simona SIMONCELLI Viktor GOURETSKI Gengxin CHEN Alexey MISHONOV Jim REAGAN Karina VON SCHUCKMANN Yuying PAN Zhetao TAN Yujing ZHU Wangxu WEI Guancheng LI Qiuping REN Lijuan CAO Yayang LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1068-1082,共15页
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc... The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023. 展开更多
关键词 ocean heat content SALINITY STRATIFICATION global warming CLIMATE
在线阅读 下载PDF
Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri 被引量:2
3
作者 Kazuhiko Fujita Yoji Kanda Takashi Hosono 《Journal of Earth Science》 SCIE CAS CSCD 2022年第6期1460-1468,共9页
Cycloclypeus carpenteri is the largest extant benthic foraminifer,dwelling in the deep euphotic zone(a water depth between 60 and 130 m)of the warm oligotrophic Indo-West Pacific.This foraminifer harbors diatom endosy... Cycloclypeus carpenteri is the largest extant benthic foraminifer,dwelling in the deep euphotic zone(a water depth between 60 and 130 m)of the warm oligotrophic Indo-West Pacific.This foraminifer harbors diatom endosymbionts and the foraminifer-microalgal association acts like a holobiont.To verify that light is an important limiting factor controlling the vertical(depth)distribution of living Cycloclypeus holobionts,their physiological responses to light intensity were examined by short-term metabolic measurements and long-term incubations.Net oxygen production(OP)rates measured under different light levels using an oxygen microelectrode indicate that Cycloclypeus holobionts are daily net primary producers adapted to low light levels,with slight photoinhibition(reduced net OP rates relative to a light-saturated rate)over 100μmol photons m^(−2)s^(−1).Long-term growth increments of asexually reproduced juveniles incubated for two months at different light levels ranging from 0 to 100μmol photons m^(−2)s^(−1) show that Cycloclypeus holobionts are adapted to a low light level(∼5μmol photons m^(−2)s^(−1)),but can be acclimatized to a certain low light ranges(<50μmol photons m^(−2)s^(−1)).These experimental results confirm that light is an important environmental gradient affecting the vertical distribution of Cycloclypeus holobionts. 展开更多
关键词 algal symbiosis DIATOM large benthic foraminifer oxygen production photosynthesis
原文传递
Modeling geologically abrupt climate changes in the Miocene: Potential effects of high-latitudinal salinity changes
4
作者 Bernd J. Haupt Dan Seidov 《Natural Science》 2012年第3期149-158,共10页
The cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes— strong deviations from the cooling trend with time span of ten to hundred thousands o... The cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes— strong deviations from the cooling trend with time span of ten to hundred thousands of years. Our working hypothesis is that some of those warming episodes at least partially might have been caused by dynamics of the Antarctic Ice Sheet, which, in turn, might have caused strong changes of sea surface salinity in the Miocene Southern Ocean. Feasibility of this hypothesis is explored in a series of offline-coupled ocean-atmosphere computer experiments. The results suggest that relatively small and geologically short-lived changes in freshwater balance in the Southern Ocean could have significantly contributed to at least two prominent warming episodes in the Miocene. Importantly, the scenario-based experiments also suggest that the Southern Ocean was more sensitive to the salinity changes in the Miocene than today, which can attributed to the opening of the Central American Isthmus as a major difference between the Miocene and the present-day ocean-sea geometry. 展开更多
关键词 Cenozoic MIOCENE Palao-Climate MODELING Community CLIMATE MODEL 3.6 Modular Ocean MODEL 2.2 Meridional OVERTURNING Freshwater Balance High-Latitudinal Salinity Changes
在线阅读 下载PDF
Numerical Characterization of Harbor Oscillations in the Port of Ensenada, Mexico
5
作者 Carlos R. Torres-Navarrete 《Open Journal of Marine Science》 2016年第3期395-404,共10页
A series of numerical experiments from a barotropic configuration of the General Curvilinear Ocean Model (GCOM) was conducted to analyze the response to infragravity (IG) waves of the Port of Ensenada, located within ... A series of numerical experiments from a barotropic configuration of the General Curvilinear Ocean Model (GCOM) was conducted to analyze the response to infragravity (IG) waves of the Port of Ensenada, located within Bahia de Todos Santos (BTS), west coast of Mexico. Experiments with forcing frequencies f = 50?1 min?1, f = 30?1 min?1, f = 25?1 min?1 and f = 16.66?1 min?1 showed the expected increase of energy at the corresponding forcing frequency band and also the appearance of secondary peaks of energy at frequency bands f = 8.33?1 min?1 and f = 4.16?1 min?1 which were identified as modes f<sub>1 </sub>and f<sub>2</sub>;being the band at f = 16.66?1 min?1 the zeroth f<sub>0</sub> mode. Maximum peak of spectral energy from the numerical experiments was found at frequency band f<sub>0</sub> = 16.66?1 min?1 which agreed with the estimated maximum value of the amplification factor and with the T<sub>0</sub> mode of oscillation of the port. Distribution of amplitudes inside PE for modes f<sub>0</sub>, f<sub>1</sub> and f<sub>2</sub> were also presented. Mode f<sub>0</sub> represents a quarter-wave oscillation with amplitudes of the same sign;mode f<sub>1</sub> has two nodal lines and mode f<sub>2</sub> presents and additional one. Corresponding harbor currents were also calculated, they were in the range 20 - 160 cm?s?1. Finally, in order to elucidate the source of the external signals found in the spectral analysis of this study, the natural oscillation modes of the BTS were estimated. Although more studies are needed, BTS oscillation mode T<sub>2</sub> = 16.82 min, was identified as the external forcing that excites larger oscillations within the port. 展开更多
关键词 Harbor Oscillations Port of Ensenada Mexico Boundary-Fitted Grids Curvilinear Coordinates
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部