The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through stro...The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.展开更多
Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a datas...Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability(Pbot21).The Pbot21,which was particularly strong from July-December 2016,was coherent with wind stress curl(WSC)on the continental shelf of the East China Sea(ECS)with a squared coherence of 0.65 for a 3-day time lag.A barotropic ocean model demonstrated the generation,propagation,and dissipation of Pbot21.The modeled results show that the Pbot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain(RIC),while deep ocean WSC could not induce such variability.On the continental shelf,the Pbot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction.The detection of Pbot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf.The Pbot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pbot21generated northeast of the Changjiang Estuary was not.展开更多
Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004...Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.展开更多
When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the mult...When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.展开更多
基金the National Natural Science Foundation of China(Nos.40890150,41730534,41776021)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)+3 种基金the National Key Research and Development Program of China(No.2017YFA0603200)the Aoshan Science and Technology Innovation Project(No.2016ASKJ12)the Major Project of Science and Technology Innovation of Shandong(No.2018SDKJ01)supported by the USA National Science Foundation award 1851316。
文摘The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.
基金The SIO group was supported by the National Natural Science Foundation of China under contract Nos41920104006,41806020,41776107 and 41906024the National Programme on Global Change and Air–Sea Interaction under contract No.GASIIPOVAI-01–02+4 种基金the Scientific Research Fund of SIO under contract Nos JZ2001 and JT1801the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,SIO under contract Nos SOEDZZ1901 and SOEDZZ1903the Kagoshima University group was supported by Core Research for Evolutional Science and Technology of the Japan Science and Technology CorporationJSPS KAKENHI under contract Nos JP15H05821 and JP15H03725supported by the“Study on Air–Sea Interaction and Process of Rapidly Intensifying Typhoon in the Northwestern Pacific”project funded by the Ministry of Oceans and Fisheries,Korea。
文摘Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability(Pbot21).The Pbot21,which was particularly strong from July-December 2016,was coherent with wind stress curl(WSC)on the continental shelf of the East China Sea(ECS)with a squared coherence of 0.65 for a 3-day time lag.A barotropic ocean model demonstrated the generation,propagation,and dissipation of Pbot21.The modeled results show that the Pbot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain(RIC),while deep ocean WSC could not induce such variability.On the continental shelf,the Pbot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction.The detection of Pbot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf.The Pbot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pbot21generated northeast of the Changjiang Estuary was not.
基金The Agency for Defense Development under contract Nos 609-83-01532,UD000008BD and UD970022ADKorea Institute of Science and Technology Evaluation and Planning under contract No.2000-N-NL-01-C-012+3 种基金the Korean Ministry of Environments under contract No.121-041-033Korean Ministry of Education under the BK21 ProgramKorea Research Foundation under the Free-doctoral scholars programKorean Ministry of Oceans and Fisheries under the projects"Development of Korea Operational Oceanographic System(KOOS)"and"Development of Technology for CO2Marine Geological Storage"
文摘Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.
基金funded by the National Institute of Fisheries Science of Korea (No. RP-2016-ME-036)
文摘When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.