期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Observational Study of Surface Wind along a Sloping Surface over Mountainous Terrain during Winter 被引量:3
1
作者 Young-Hee LEE Gyuwon LEE +1 位作者 Sangwon JOO Kwang-Deuk AHN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期276-284,共9页
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongch... The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region. 展开更多
关键词 flow separation gust factor leeward region sloping surface
在线阅读 下载PDF
Verification and Correction of Cloud Base and Top Height Retrievals from Ka–band Cloud Radar in Boseong,Korea 被引量:1
2
作者 Su-Bin OH Yeon-Hee KIM +2 位作者 Ki-Hoon KIM Chun-Ho CHO Eunha LIM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期73-84,共12页
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(Septembe... In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently. 展开更多
关键词 cloud radar CEILOMETER satellite retrieval cloud base height cloud top height cloud type
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部