Verification of operation parameters of VVER-1200 NPP Simulator installed at Nuclear Training Center, VINATOM has been performed. This simulator has been supplied for Vietnam in the framework of IAEA TC Project VIE201...Verification of operation parameters of VVER-1200 NPP Simulator installed at Nuclear Training Center, VINATOM has been performed. This simulator has been supplied for Vietnam in the framework of IAEA TC Project VIE2010 on Developing Nuclear Power Infrastructure—Phase II hosted by the Vietnam Atomic Energy Agency (VAEA). The comparison of the main parameters in nominal power operation with design data given in safety analysis report of VVER-1200/V392M as well as Ninh Thuan FSSAR is presented. In this study, the reactor coolant coast-down transient is investigated using the VVER-1200 NPP simulator. The simulated results performed in the simulator through switching off one reactor coolant pump in comparisons with experiment results performed in VVER-1000 reactor are given. The similarity between the measured and simulated results shows that the thermal hydraulic characteristics and the control protection systems are modeled in a reasonable way. A good agreement in operating parameters was found between the VVER-1200 NPP simulator and VVER-1200/V392M’s PSAR.展开更多
The coincidence technique and the coincidence spectroscopy have been developed and applied for over 40 years. Most of popular coincidence measurement systems were based on analog electronics techniques such as time to...The coincidence technique and the coincidence spectroscopy have been developed and applied for over 40 years. Most of popular coincidence measurement systems were based on analog electronics techniques such as time to amplitude conversion (TAC) or logic selecting coincidence unit. The above-mentioned systems are relatively cumbersome and complicated to use. With the strong growth of digital electronics techniques and computational science, the coincidence measurement systems will be constructed simpler but more efficient with the sake of application. This article presents the design principle and signal processing of a simple two-channel coincidence system by a technique of digital signal processing (DSP) using Field Programmable Gate Arrays (FPGA) devices at Nuclear Research Institute (NRI), Dalat.展开更多
The thermal neutron capture gamma radiations for 51V(n, g)52V reaction have been studied at Dalat Nuclear Research Reactor (DNRR). The gamma two-step cascade transition was measured by event-event coincidence spectrom...The thermal neutron capture gamma radiations for 51V(n, g)52V reaction have been studied at Dalat Nuclear Research Reactor (DNRR). The gamma two-step cascade transition was measured by event-event coincidence spectrometer. The added-neutron binding energy in 52V was measured as 7.31 MeV. Energy and the intensity transition of cascades were consistent with prediction of single particle model. Furthermore, the spin and the parity of levels were confined.展开更多
In the past, most of popular coincidence spectrometers were normally based on traditional electronics techniques such as time to amplitude conversion or logic selecting coincidence unit. They were complicated and it i...In the past, most of popular coincidence spectrometers were normally based on traditional electronics techniques such as time to amplitude conversion or logic selecting coincidence unit. They were complicated and it is not convenient for us to use them. This paper deals with a new design of a contemporary coincidence spectrometer which is based on Field Programmable Gate Arrays (FPGA) devices via Digital Signal Processing (DSP) techniques with Hardware Description Language (VHDL). The outstanding advantage of DSP techniques and FPGA technology is capable of enhancement of the quality of the experimental measurements for nuclear radiation. The designed configuration of the traditional system was tested on the PCI 7811R board of National Instruments while the digital systems were establishing with FPGA devices. The purpose of this work is referring to the principle for construction of an FPGA-based system capable of replacing a conventional system. Therefore, a novel approach for in-house development of digital techniques is presented. The method for designing the system is utilization of slow-fast coincidence configurations with two HPGe detectors obtaining a pair of coincidence events, processing data in DSP algorithms. The significant and noticeable results are the operating frequency of 80 MHz and system timestamp window of approximately 10 ns.展开更多
文摘Verification of operation parameters of VVER-1200 NPP Simulator installed at Nuclear Training Center, VINATOM has been performed. This simulator has been supplied for Vietnam in the framework of IAEA TC Project VIE2010 on Developing Nuclear Power Infrastructure—Phase II hosted by the Vietnam Atomic Energy Agency (VAEA). The comparison of the main parameters in nominal power operation with design data given in safety analysis report of VVER-1200/V392M as well as Ninh Thuan FSSAR is presented. In this study, the reactor coolant coast-down transient is investigated using the VVER-1200 NPP simulator. The simulated results performed in the simulator through switching off one reactor coolant pump in comparisons with experiment results performed in VVER-1000 reactor are given. The similarity between the measured and simulated results shows that the thermal hydraulic characteristics and the control protection systems are modeled in a reasonable way. A good agreement in operating parameters was found between the VVER-1200 NPP simulator and VVER-1200/V392M’s PSAR.
文摘The coincidence technique and the coincidence spectroscopy have been developed and applied for over 40 years. Most of popular coincidence measurement systems were based on analog electronics techniques such as time to amplitude conversion (TAC) or logic selecting coincidence unit. The above-mentioned systems are relatively cumbersome and complicated to use. With the strong growth of digital electronics techniques and computational science, the coincidence measurement systems will be constructed simpler but more efficient with the sake of application. This article presents the design principle and signal processing of a simple two-channel coincidence system by a technique of digital signal processing (DSP) using Field Programmable Gate Arrays (FPGA) devices at Nuclear Research Institute (NRI), Dalat.
文摘The thermal neutron capture gamma radiations for 51V(n, g)52V reaction have been studied at Dalat Nuclear Research Reactor (DNRR). The gamma two-step cascade transition was measured by event-event coincidence spectrometer. The added-neutron binding energy in 52V was measured as 7.31 MeV. Energy and the intensity transition of cascades were consistent with prediction of single particle model. Furthermore, the spin and the parity of levels were confined.
文摘In the past, most of popular coincidence spectrometers were normally based on traditional electronics techniques such as time to amplitude conversion or logic selecting coincidence unit. They were complicated and it is not convenient for us to use them. This paper deals with a new design of a contemporary coincidence spectrometer which is based on Field Programmable Gate Arrays (FPGA) devices via Digital Signal Processing (DSP) techniques with Hardware Description Language (VHDL). The outstanding advantage of DSP techniques and FPGA technology is capable of enhancement of the quality of the experimental measurements for nuclear radiation. The designed configuration of the traditional system was tested on the PCI 7811R board of National Instruments while the digital systems were establishing with FPGA devices. The purpose of this work is referring to the principle for construction of an FPGA-based system capable of replacing a conventional system. Therefore, a novel approach for in-house development of digital techniques is presented. The method for designing the system is utilization of slow-fast coincidence configurations with two HPGe detectors obtaining a pair of coincidence events, processing data in DSP algorithms. The significant and noticeable results are the operating frequency of 80 MHz and system timestamp window of approximately 10 ns.