Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if ...Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if necessary. The purpose of this study is to encourage health professionals to investigate patient radiation doses and to determine whether those doses comply with the principles of radiation protection in medical fields so as to improve practices by reducing patient exposure without reducing clinical effectiveness. To perform this work, we have investigated patient doses for different radiological examinations from six (6) medical centers in Dakar, including the following nine routine types: chest (PA), abdomen (AP), pelvis (AP), cervical spine (AP), lumbar spine (AP, Lat), hip (AP), thoracic spine (AP, Lat). Three types of data were collected, <em>i.e.</em>, X-ray tube machine data, patient data and output measurements. The data were analyzed statistically and the median, minimum, maximum, and third quartile values were calculated and displayed throughout boxplots graphs for all exams and medical centers. The two sigma range (95% confidence interval) was also checked. Comparison of third quartiles of Entrance Surface Dose (ESD) and Dose Area Product (DAP) by type of examination with recommended international DRLs was performed. The third quartile of ESD for pelvis (AP) and thoracic spine (AP) was up to 16% and 38% higher, respectively than their corresponding DRLs in the European Commission Report RP 180 Part 2. For all exams, except thoracic spine (lat), the third quartiles of the dose area product were higher than the corresponding DRLs in the above report. The source of dose variability between medical centers was related to many parameters such as poor radiographic techniques, lack of modern X-ray machines and adequately documented radiation protection practices. The results show the need to develop protocols for dose measurement as well as to carry out quality assurance programs and dose optimization in Senegal.展开更多
Sand is an important natural material for the construction of houses, work buildings and other public spaces. This work, which is one of the first contributions to the environmental quality of construction materials, ...Sand is an important natural material for the construction of houses, work buildings and other public spaces. This work, which is one of the first contributions to the environmental quality of construction materials, concerns the measurement of natural radioactivity in the lagoon sands collected in the district of Abidjan. Nineteen (19) samples of these sands are analyzed by gamma-ray spectrometry equipped with HPGe detector. The mean values obtained for <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K are respectively 7.76 ± 1.84 Bq·kg<sup>-1</sup>, 5.21 ± 1.36 Bq·kg<sup>-1</sup>, and 217.31 ± 5.03 Bq·kg<sup>-1</sup>. The estimated average value of radium equivalent (Raeq) is 31.94 Bq·kg-1. The results show that the average values obtained are far lower than the global limits of 35, 30, and 400 Bq·kg<sup>-1</sup> for the concentrations of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K, respectively, and 370 Bq·kg<sup>-1 </sup>for the equivalent radium established by the United Nations Scienti<span style="white-space:nowrap;">fi</span>c Committee on the Effects of Atomic Radiation (UNSCEAR). Therefore, the use of the analyzed lagoon sand samples in the different construction sectors should not cause serious radiological effects on the populations living in the District of Abidjan. Our results provide new data on building materials radioactivity in C<span style="white-space:nowrap;">ô</span>te d’Ivoire and all over the World. They can also be used as a reference for future work.展开更多
JMJD1C(Jumonji Domain Containing 1C), a member of the lysine demethylase 3(KDM3) family, is universally required for the survival of several types of acute myeloid leukemia(AML) cells with different genetic mutations,...JMJD1C(Jumonji Domain Containing 1C), a member of the lysine demethylase 3(KDM3) family, is universally required for the survival of several types of acute myeloid leukemia(AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.展开更多
文摘Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if necessary. The purpose of this study is to encourage health professionals to investigate patient radiation doses and to determine whether those doses comply with the principles of radiation protection in medical fields so as to improve practices by reducing patient exposure without reducing clinical effectiveness. To perform this work, we have investigated patient doses for different radiological examinations from six (6) medical centers in Dakar, including the following nine routine types: chest (PA), abdomen (AP), pelvis (AP), cervical spine (AP), lumbar spine (AP, Lat), hip (AP), thoracic spine (AP, Lat). Three types of data were collected, <em>i.e.</em>, X-ray tube machine data, patient data and output measurements. The data were analyzed statistically and the median, minimum, maximum, and third quartile values were calculated and displayed throughout boxplots graphs for all exams and medical centers. The two sigma range (95% confidence interval) was also checked. Comparison of third quartiles of Entrance Surface Dose (ESD) and Dose Area Product (DAP) by type of examination with recommended international DRLs was performed. The third quartile of ESD for pelvis (AP) and thoracic spine (AP) was up to 16% and 38% higher, respectively than their corresponding DRLs in the European Commission Report RP 180 Part 2. For all exams, except thoracic spine (lat), the third quartiles of the dose area product were higher than the corresponding DRLs in the above report. The source of dose variability between medical centers was related to many parameters such as poor radiographic techniques, lack of modern X-ray machines and adequately documented radiation protection practices. The results show the need to develop protocols for dose measurement as well as to carry out quality assurance programs and dose optimization in Senegal.
文摘Sand is an important natural material for the construction of houses, work buildings and other public spaces. This work, which is one of the first contributions to the environmental quality of construction materials, concerns the measurement of natural radioactivity in the lagoon sands collected in the district of Abidjan. Nineteen (19) samples of these sands are analyzed by gamma-ray spectrometry equipped with HPGe detector. The mean values obtained for <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K are respectively 7.76 ± 1.84 Bq·kg<sup>-1</sup>, 5.21 ± 1.36 Bq·kg<sup>-1</sup>, and 217.31 ± 5.03 Bq·kg<sup>-1</sup>. The estimated average value of radium equivalent (Raeq) is 31.94 Bq·kg-1. The results show that the average values obtained are far lower than the global limits of 35, 30, and 400 Bq·kg<sup>-1</sup> for the concentrations of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K, respectively, and 370 Bq·kg<sup>-1 </sup>for the equivalent radium established by the United Nations Scienti<span style="white-space:nowrap;">fi</span>c Committee on the Effects of Atomic Radiation (UNSCEAR). Therefore, the use of the analyzed lagoon sand samples in the different construction sectors should not cause serious radiological effects on the populations living in the District of Abidjan. Our results provide new data on building materials radioactivity in C<span style="white-space:nowrap;">ô</span>te d’Ivoire and all over the World. They can also be used as a reference for future work.
基金National Key R&D Program of China(grant 2021YFA1300100 to M.C.)Beijing Municipal Natural Science Foundation(grant JQ23024 to M.C)+2 种基金Leukemia and Lymphoma Society(grant 7021-20 to R.G.R)National Natural Science Foundation of China(grant 32300445 to Q.C.)Tsinghua-Peking Center for Life Sciences postdoctoral fellowship to Q.C..
文摘JMJD1C(Jumonji Domain Containing 1C), a member of the lysine demethylase 3(KDM3) family, is universally required for the survival of several types of acute myeloid leukemia(AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.