Tungsten(W)is the leading plasma-facing candidate material for the International Thermonuclear Experimental Reactor and next-generation fusion reactors.The impact of synergistic helium(He),irradiation-induced microstr...Tungsten(W)is the leading plasma-facing candidate material for the International Thermonuclear Experimental Reactor and next-generation fusion reactors.The impact of synergistic helium(He),irradiation-induced microstructural changes,and the corresponding thermal-mechanical property degradation of W are critically important but are not well understood yet.Predicting the performance of W in fusion environments requires understanding the fundamentals of He-defect interactions and the resultant He bubble nucleation and growth in W.In this study,He retention in helium-ion-implanted W was assessed using neutron depth profiling(NDP),laser ablation mass spectrometry(LAMS),and thermal desorption spectroscopy(TDS)following 10 keV room-temperature He implantation at various fluences.These three experimental techniques enabled the determination of the He depth profile and retention in He-implanted W.A cluster dynamics model based on the diffusion-reaction rate theory was applied to interpret the experimental data.The model successfully predicted the He spatial depth-dependent profile in He-implanted W,which was in good agreement with the LAMS measurements.The model also successfully captured the major features of the He desorption spectra observed in the THDS measurements.The NDP quantified total He concentration values for the samples;they were similar to those estimated by LAMS.However,the depth profiles from NDP and LAMS were not comparable due to several factors.The combination of modeling and experimentation enabled the identification of possible trapping sites for He in W and the evolution of He-defect clusters during the TDS thermal annealing process.展开更多
The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary co...The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.展开更多
Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,...Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,Co,and Ni as catalysts.When the electrolyte containing Ni O,Co2O3,and Fe_(2)O_(3) was employed,sulfur-doped CNFs in various diameters were obtained.With the introduction of Fe catalyst,the obtained sulfur-doped CNFs showed the smallest and tightest diameter distributions.The obtained sulfur-doped CNFs had high gravimetric capacitance(achieved by SDG-Fe)that could reach 348.5 F/g at 0.5 A/g,excellent cycling stability,and good rate performance.For comparison purposes,both Fe and nickel cathodes were tested,where the active metal atom at their surface could act as catalyst.In these two situations,sulfur-doped graphite sheet and sulfur-doped graphite quasi-sphere were the main products.展开更多
To calculate the radioactivity of product nuclides generated in pulse irradiation, it is generally assumed that the irradiation is approximately continuous in the entire irradiation period(ti) and the flux of the inco...To calculate the radioactivity of product nuclides generated in pulse irradiation, it is generally assumed that the irradiation is approximately continuous in the entire irradiation period(ti) and the flux of the incoming irradiation particle can be obtained by averaging their intensity in each pulse period(T). However, this approximation fails to acknowledge the fact that the product nuclides are not created in each pulse period(T)evenly: They are only produced in a very short pulse width(tp) and then decay in a relatively long rest time(tr = T-tp). Given by the enormous number of pulses, the sum of these decays may not be negligible. To make the activity calculation in accordance with the real situation in pulse irradiation, we scrutinize the details of irradiation and decay processes in each pulse, apply the geometric series to obtain the activity superimposition of millions of pulses,and derive a novel activity equation particularly suitable for pulse irradiation. The experimental results,numerical simulations,and activity measurements from photon activation driven by a pulsed electron LINAC have confirmed the validity of this new equation. The comparison between the new and traditional equations indicates that their discrepancy could be significant under certain conditions. The limitations of the new activity equation for pulse irradiation are discussed as well.展开更多
Data from Global Cancer Statistics show that breast cancer (BC) is the most common type of cancer among women, leading the number of deaths caused by cancer. The developments in diagnosis and treatment techniques for ...Data from Global Cancer Statistics show that breast cancer (BC) is the most common type of cancer among women, leading the number of deaths caused by cancer. The developments in diagnosis and treatment techniques for the BC, including chemotherapy and/or radiotherapy, increased the survival rates for this type of cancer. One late complication induced by BC treatment is the cardiotoxicity. This term comprises different cardiotoxic side effects, which include blood pressure alterations, myocardial ischemia, congestive heart failure and other damages. This study aimed to evaluate the cardiac alterations induced by radiotherapy and chemotherapy, simulating a treatment for BC in Wistar rats. It is, therefore, important to understand the mechanisms involved in the cardiotoxicity, in order to prevent women from this late effect, when they undergo BC treatments. The major interests in this work are in Low atomic weight elements as Sodium, because it is strongly related to cardiomyocyte contraction;Magnesium, because it is important in the cardiac metabolism;and Iron, because BC treatment induced cardiotoxicity can be associated to the oxidative stress. Changes that occur in unhealthy tissues in case to cardiovascular damages can be better understood when elemental compounds and structures of healthy tissues are known. Low Energy X-ray Fluorescence (LEXRF) technique was used to obtain elemental maps of low Z-elements providing a semi-quantitative analysis of the tissues evaluated under different conditions. Through the technique LEXRF we obtained elemental and absorption maps. The results showed more damages when associating chemotherapy and radiotherapy in comparison to myocardium healthy. Those images taken together with light microscopy, X-ray absorption and phase contrast images, satisfactorily characterize the cardiac tissue for the first time in the literature, from the structural and morphological points of view. LEXRF was carried out at TwinMic beamline in the ELETTRA Synchrotron Fa-cility, at the beamline TwinMic, in Trieste, Italy.展开更多
The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Ru...The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Runge-Kutta Method in order to check which methods are best applicable in transients caused by External Neutron Source. For this purpose, a one-dimensional ADS reactor with a constant external source was simulated based on the geometry of ANL-BSS-6 reactor for benchmark effects.展开更多
Selective area electron diffraction(SAED)patterns can provide valuable insight into the structure of a material.However,the manual identification of collected patterns can be a significant bottleneck in the overall ph...Selective area electron diffraction(SAED)patterns can provide valuable insight into the structure of a material.However,the manual identification of collected patterns can be a significant bottleneck in the overall phase classification workflow.In this work,we utilize the recent advances in computer vision and machine learning(ML)to automate the indexing of SAED patterns.The performance of six different ML algorithms is demonstrated using metallic plutonium-zirconium alloys.The most successful approach trained a neural network(NN)to make a classification of the phase and zone axis,and then utilized a second NN to synthesize multiple independent predictions of different tilts in a single sample to make an overall phase identification.The results demonstrate that automated SAED phase identification using ML is a viable route to accelerate materials characterization.展开更多
The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent th...The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results, allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.展开更多
Bubble dynamics are associated with wide and important applications in cavitation erosion in many industrial systems, medical ultrasonics and underwater explosions. Two recent developments to this classical problem ar...Bubble dynamics are associated with wide and important applications in cavitation erosion in many industrial systems, medical ultrasonics and underwater explosions. Two recent developments to this classical problem are reviewed in this paper. Firstly, computational studies on the problem have commonly been based on an incompressible fluid model. However, a bubble usually undergoes significantly damped oscillation due to the compressible effects. We model this phenomenon using weakly compressible theory and a modified boundary integral method. This model considers the energy loss due to shock waves emitted at minimum bubble volumes. Secondly, the computational studies so far have largely been concerned with the first-cycle of oscillation. However, a bubble usually oscillates for a few cycles before it breaks into much smaller ones. We model both the first- and second-cycles of oscillationand predict damped oscillations. Our computations correlate well with the experimental data.展开更多
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the holl...For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.展开更多
With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during...With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics(SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom(6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional(3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.展开更多
基金supported by the U.S.Department of EnergyOffice of Science+5 种基金Fusion Energy Sciences Programunder Contract No.DE-AC05-00OR22725 with UT-BattelleLLCfinancial support from the US Department of EnergyOffice of Fusion Energy Science under grant DOE-DE-SC000661 at The University of Tennessee-KnoxvilleJLW and HCM were funded by the National Institute of Standards and Technology。
文摘Tungsten(W)is the leading plasma-facing candidate material for the International Thermonuclear Experimental Reactor and next-generation fusion reactors.The impact of synergistic helium(He),irradiation-induced microstructural changes,and the corresponding thermal-mechanical property degradation of W are critically important but are not well understood yet.Predicting the performance of W in fusion environments requires understanding the fundamentals of He-defect interactions and the resultant He bubble nucleation and growth in W.In this study,He retention in helium-ion-implanted W was assessed using neutron depth profiling(NDP),laser ablation mass spectrometry(LAMS),and thermal desorption spectroscopy(TDS)following 10 keV room-temperature He implantation at various fluences.These three experimental techniques enabled the determination of the He depth profile and retention in He-implanted W.A cluster dynamics model based on the diffusion-reaction rate theory was applied to interpret the experimental data.The model successfully predicted the He spatial depth-dependent profile in He-implanted W,which was in good agreement with the LAMS measurements.The model also successfully captured the major features of the He desorption spectra observed in the THDS measurements.The NDP quantified total He concentration values for the samples;they were similar to those estimated by LAMS.However,the depth profiles from NDP and LAMS were not comparable due to several factors.The combination of modeling and experimentation enabled the identification of possible trapping sites for He in W and the evolution of He-defect clusters during the TDS thermal annealing process.
基金Project supported by the Science Foundation of China University of Petroleum in Beijing(No.2462013YJRC003)
文摘The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.
基金the National Natural Science Foundation of China(No.51804056)the Fundamental Research Funds for the Central Universities(No.2019CDXYCL0031)the Fundamental and Frontier Research Project of Chongqing,China(No.cstc2019jcyjmsxm X0230)。
文摘Carbon nanofiber(CNF)is considered a promising material due to its excellent physical and chemical properties.This paper proposes a novel way to transform CO_(2) into heteroatom-doped CNFs,with the introduction of Fe,Co,and Ni as catalysts.When the electrolyte containing Ni O,Co2O3,and Fe_(2)O_(3) was employed,sulfur-doped CNFs in various diameters were obtained.With the introduction of Fe catalyst,the obtained sulfur-doped CNFs showed the smallest and tightest diameter distributions.The obtained sulfur-doped CNFs had high gravimetric capacitance(achieved by SDG-Fe)that could reach 348.5 F/g at 0.5 A/g,excellent cycling stability,and good rate performance.For comparison purposes,both Fe and nickel cathodes were tested,where the active metal atom at their surface could act as catalyst.In these two situations,sulfur-doped graphite sheet and sulfur-doped graphite quasi-sphere were the main products.
基金supported by the U.S.Department of Energy,Office of Environmental Management(EM),MSIPP program under TOA#0000272361
文摘To calculate the radioactivity of product nuclides generated in pulse irradiation, it is generally assumed that the irradiation is approximately continuous in the entire irradiation period(ti) and the flux of the incoming irradiation particle can be obtained by averaging their intensity in each pulse period(T). However, this approximation fails to acknowledge the fact that the product nuclides are not created in each pulse period(T)evenly: They are only produced in a very short pulse width(tp) and then decay in a relatively long rest time(tr = T-tp). Given by the enormous number of pulses, the sum of these decays may not be negligible. To make the activity calculation in accordance with the real situation in pulse irradiation, we scrutinize the details of irradiation and decay processes in each pulse, apply the geometric series to obtain the activity superimposition of millions of pulses,and derive a novel activity equation particularly suitable for pulse irradiation. The experimental results,numerical simulations,and activity measurements from photon activation driven by a pulsed electron LINAC have confirmed the validity of this new equation. The comparison between the new and traditional equations indicates that their discrepancy could be significant under certain conditions. The limitations of the new activity equation for pulse irradiation are discussed as well.
文摘Data from Global Cancer Statistics show that breast cancer (BC) is the most common type of cancer among women, leading the number of deaths caused by cancer. The developments in diagnosis and treatment techniques for the BC, including chemotherapy and/or radiotherapy, increased the survival rates for this type of cancer. One late complication induced by BC treatment is the cardiotoxicity. This term comprises different cardiotoxic side effects, which include blood pressure alterations, myocardial ischemia, congestive heart failure and other damages. This study aimed to evaluate the cardiac alterations induced by radiotherapy and chemotherapy, simulating a treatment for BC in Wistar rats. It is, therefore, important to understand the mechanisms involved in the cardiotoxicity, in order to prevent women from this late effect, when they undergo BC treatments. The major interests in this work are in Low atomic weight elements as Sodium, because it is strongly related to cardiomyocyte contraction;Magnesium, because it is important in the cardiac metabolism;and Iron, because BC treatment induced cardiotoxicity can be associated to the oxidative stress. Changes that occur in unhealthy tissues in case to cardiovascular damages can be better understood when elemental compounds and structures of healthy tissues are known. Low Energy X-ray Fluorescence (LEXRF) technique was used to obtain elemental maps of low Z-elements providing a semi-quantitative analysis of the tissues evaluated under different conditions. Through the technique LEXRF we obtained elemental and absorption maps. The results showed more damages when associating chemotherapy and radiotherapy in comparison to myocardium healthy. Those images taken together with light microscopy, X-ray absorption and phase contrast images, satisfactorily characterize the cardiac tissue for the first time in the literature, from the structural and morphological points of view. LEXRF was carried out at TwinMic beamline in the ELETTRA Synchrotron Fa-cility, at the beamline TwinMic, in Trieste, Italy.
基金the support provided by the Fundacao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro(FAPERJ),Brazil.
文摘The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Runge-Kutta Method in order to check which methods are best applicable in transients caused by External Neutron Source. For this purpose, a one-dimensional ADS reactor with a constant external source was simulated based on the geometry of ANL-BSS-6 reactor for benchmark effects.
基金The funding for this work was provided by the U.S.Department of Energy,Office of Nuclear Energy Contract DEAC07-051D14517The CNN work was partially supported by the National Science Foundation(award number 1552716).
文摘Selective area electron diffraction(SAED)patterns can provide valuable insight into the structure of a material.However,the manual identification of collected patterns can be a significant bottleneck in the overall phase classification workflow.In this work,we utilize the recent advances in computer vision and machine learning(ML)to automate the indexing of SAED patterns.The performance of six different ML algorithms is demonstrated using metallic plutonium-zirconium alloys.The most successful approach trained a neural network(NN)to make a classification of the phase and zone axis,and then utilized a second NN to synthesize multiple independent predictions of different tilts in a single sample to make an overall phase identification.The results demonstrate that automated SAED phase identification using ML is a viable route to accelerate materials characterization.
基金financial support provided by CNPq,CAPES and FAPERJ ofBrazil for their research workfinancial support provided by China Scholarship Council
文摘The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results, allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.
文摘Bubble dynamics are associated with wide and important applications in cavitation erosion in many industrial systems, medical ultrasonics and underwater explosions. Two recent developments to this classical problem are reviewed in this paper. Firstly, computational studies on the problem have commonly been based on an incompressible fluid model. However, a bubble usually undergoes significantly damped oscillation due to the compressible effects. We model this phenomenon using weakly compressible theory and a modified boundary integral method. This model considers the energy loss due to shock waves emitted at minimum bubble volumes. Secondly, the computational studies so far have largely been concerned with the first-cycle of oscillation. However, a bubble usually oscillates for a few cycles before it breaks into much smaller ones. We model both the first- and second-cycles of oscillationand predict damped oscillations. Our computations correlate well with the experimental data.
基金Supported by National Natural Science Foundation of China(11105008,10775011)
文摘For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1430236,51609045)
文摘With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics(SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom(6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional(3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.