Even in small concentrations,toxic metals like lead,cadmium,and mercury are dangerous to the environment and human health.Environmental monitoring depends on precisely identifying these heavy metals,particularly cadmi...Even in small concentrations,toxic metals like lead,cadmium,and mercury are dangerous to the environment and human health.Environmental monitoring depends on precisely identifying these heavy metals,particularly cadmium ions(Cd(Ⅱ)).In this study,we present a novel screen-printed carbon electrode(SPCE)modified with single crystallineα-Fe_(2)O_(3)nano-hexagons that functions as a sensor for detecting Cd(Ⅱ).The performance of the fabricated sensor was thoroughly assessed and compared with unmodified SPCE using the voltammetric method.The crystalline structure of the synthesizedα-Fe_(2)O_(3)nano-hexagons was confirmed through XRD,and surface analysis revealed an average diameter and thickness of 86 nm and 9 nm,respectively.Theα-Fe_(2)O_(3)modified SPCE yields a 7-fold enhanced response(at pH 5.0 vs.Ag/AgCl)to Cd(Ⅱ)than bare SPCE.The modified electrode effectively detects Cd(Ⅱ)with a linear response range of up to 333.0μmol/L and a detection limit of 0.65 nmol/L under ideal circumstances.This newly fabricated sensor offers significant potential for environmental monitoring applications by providing outstanding practicality,anti-interference ability,and repeatability for detecting Cd(Ⅱ)in water samples.展开更多
The present work aims to achieve a fast and accurate analytical solution of the point kinetics equations applied to subcritical reactors such as ADS (Accelerator-Driven System), assuming a linear reactivity and extern...The present work aims to achieve a fast and accurate analytical solution of the point kinetics equations applied to subcritical reactors such as ADS (Accelerator-Driven System), assuming a linear reactivity and external source variation. It was used a new set of point kinetics equations for subcritical systems based on the model proposed by Gandini & Salvatores. In this work it was employed the integrating factor method. The analytical solution for the case of interest was obtained by using only an approximation which consists of disregarding the term of the second derivative for neutron density in relation to time when compared with the other terms of the equation. And also, it is proposed an approximation for the upper incomplete gamma function found in the solution in order to make the computational processing faster. In addition, for purposes of validation and comparison a numerical solution was obtained by the finite differences method. Finally, it can be concluded that the obtained solution is accurate and has fast numerical processing time, especially when compared with the results of numerical solution by finite difference. One can also observe that the gamma approximation used achieve a high accuracy for the usual parameters. Thus we got satisfactory results when the solution is applied to practical situations, such as a reactor startup.展开更多
Fricke gel dosimetry is a critical technique for accurate radiation dose measurement, leveraging the radiation-induced oxidation of ferrous to ferric ions within a hydrogel matrix. This study aimed to advance the fiel...Fricke gel dosimetry is a critical technique for accurate radiation dose measurement, leveraging the radiation-induced oxidation of ferrous to ferric ions within a hydrogel matrix. This study aimed to advance the field by preparing and evaluating seventy-one Fricke gel dosimeter(FGD) samples with varying chemical compositions, focusing on the incorporation of benzoic acid. Two gelatin-based samples demonstrated superior sensitivity, particularly for low-dose measurements. Our findings indicated that the sample without benzoic acid exhibited a 1.75 times higher sensitivity compared to the sample containing benzoic acid, with lower limits of detection at 0.04 Gy and 0.1 Gy, respectively. Stability tests revealed temperature-dependent responses, with better performance observed under refrigerated conditions. Reproducibility was confirmed through consistent calibration curves across multiple trials. Additionally, the dosimeters' responses varied with different radiation types, underscoring the need for specific calibrations. The study concludes that while benzoic acid slightly reduces sensitivity, it provides consistent responses across various radiation energies, suggesting its potential as a beneficial additive in diverse clinical scenarios. This research contributes to the ongoing optimization of FGDs for precise radiation dose assessment.展开更多
Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collim...Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collimator must keep a compromise between spatial resolution and sensitivity.In order to design a pinhole collimator with an optimized sensitivity and spatial resolution,the spatial resolution and the geometric sensitivity response as a function of the source to collimator distance has been obtained by means of Monte-Carlo simulation for a small field of view gamma camera with a pinhole collimator of various-hole diameters.The results show that the camera with pinhole of 1 mm,1.5 mm and 2 mm diameter has respectively spatial resolution of 1.5 mm,2.25 mm and 3 mm and geometric sensitivity of 0.016%,0.022%and 0.036%,while the source to collimator distance is 3 cm.We chose the pinhole collimator with hole diameter size of 1.2 mm for our the gamma camera designed based on the trade-off between sensitivity and resolution.展开更多
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and resea...The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.展开更多
When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the ope...When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.展开更多
In this study,COMSOL v5.2 Multiphysics software was utilized to perform coupled neutronics and thermal–hydraulics simulations of a molten salt fast reactor,and the SCALE v6.1 code package was utilized to generate the...In this study,COMSOL v5.2 Multiphysics software was utilized to perform coupled neutronics and thermal–hydraulics simulations of a molten salt fast reactor,and the SCALE v6.1 code package was utilized to generate the homogenized cross-section data library.The library’s 238 cross-section groups were categorized into nine groups for the simulations in this study.The results of the COMSOL model under no fuel flow conditions were verified using the SCALE v6.1 code results,and the results of the neutronics and thermal–hydraulics simulations were compared to the results of previously published studies.The results indicated that the COMSOL model that includes the cross-section library generated by the SCALE v6.1 code package is suitable for the steady-state analysis and design assessment of molten salt fast reactors.Subsequently,this model was utilized to investigate the neutronics and thermal–hydraulics behaviors of the reactor.Multiple designs were simulated and analyzed in this model,and the results indicated that even if the wall of the core is curved,hot spots occur in the upper and lower portions of the core’s center near the reflectors.A new design was proposed that utilizes a flow rate distribution system,and the simulation results of this design showed that the maximum temperature in the core was approximately 1032 K and no hot spots occurred.展开更多
AIM:To evaluate inflammatory activity in patients with Crohn's disease (CD) using technetium-99m-hexamethylpropyleneamine oxime (99mTc-HMPAO) granulocyte scintigraphy.METHODS: Twenty patients (7 male and 13 female...AIM:To evaluate inflammatory activity in patients with Crohn's disease (CD) using technetium-99m-hexamethylpropyleneamine oxime (99mTc-HMPAO) granulocyte scintigraphy.METHODS: Twenty patients (7 male and 13 female) with CD and five healthy volunteers were selected for 99mTc-HMPAO granulocyte scintigraphy. The Crohn's Disease Activity Index (CDAI), blood tests and C-reactive protein (CRP) of each patient were performed 7 d before the scintigraphic images. The leukocytes were labeled according to the International Society of Radiolabeled Blood Elements (ISORBE) consensus protocol and the scintigraphic images, including single photon emission computed tomography, were obtained 30 min and 2 h after injection of the radiolabeled leukocytes.RESULTS:The labeling yield of the leukocytes with the lipophilic complex 99mTc-HMPAO was 55.0%±10%. Six of the 20 patients (30%) presented congruent results for the three parameters investigated (CDAI, Scintigraphic Index and CRP). On the other hand, 14 patients (70%) did not show congruent results. There was no significant correlation between the indices analyzed according to the Spearman test (P>0.05,n=20).CONCLUSION: The results suggest that 99mTc-HMPAO-labeled leukocyte scintigraphy could be important for determining inflammatory activity in CD even in the absence of clinical symptoms.展开更多
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin...Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.展开更多
The development of structural materials resistant to harsh radiation environments requires an in-depth understanding of the early stage of the aging processes.In radiation environments with high transmutation helium p...The development of structural materials resistant to harsh radiation environments requires an in-depth understanding of the early stage of the aging processes.In radiation environments with high transmutation helium production rates such as in fusion and spallation applications,even materials with otherwise acceptable radiation stability may suffer from radiation embrittlement related to helium bubble formation.While theoretical modeling of helium-assisted cavity nucleation in pure metals and simple alloys provides some useful guidelines at the atomic scale level,these,however,do not overlap with the size resolution of available experimental techniques.In this study,we employed slow positron beam spectroscopy to characterize the nucleation and growth of nano-scale helium bubbles in martensitic steels strengthened by thermodynamically stable nano-oxide dispersoids.In combination with transmission electron microscopy,we experimentally characterized the evolution of helium bubbles from small clusters of radiation-induced vacancies to large cavities well resolvable by TEM.Superior radiation resistance of oxide-dispersion strengthened steels dominates only in the early stages of bubble evolution,where positron lifetime measurements provide a missing piece of the microstructural puzzle conventionally constructed by TEM.展开更多
Speed is the new stealth and earlier this week America’s top nuclear commander described a grim scenario for U.S.forces facing off against hypersonic weapons.“We do not have any defense that could deny the employmen...Speed is the new stealth and earlier this week America’s top nuclear commander described a grim scenario for U.S.forces facing off against hypersonic weapons.“We do not have any defense that could deny the employment of such a weapon against us,”Air Force Gen.John Hyten,commander of U.S.Strategic Command,told the Senate Armed Services Committee on Tuesday March 20,2018.Russian and Chinese are aggressively developing new weapons that travel at Mach 5 or higher,which is at least five times faster than speed of sound(hypersonic).These weapons travel in excess of 3,600 miles per hour(1 mile per second)and currently,no military possesses a credible defense.Finding,tracking and intercepting something that fast is unprecedented.Given that Russia and China have invested heavily in advanced defensive technologies that now hold most of our traditional forms of power projection at risk,this is a significant advantage—it is one that would impose major costs upon a defending nation.Recently,according to the director of the Army’s Rapid Capabilities and Critical Technologies Office(ARCCTO),The Army will field a battery of truck-borne hypersonic missiles in 2023,with a contract award in August,the service’s new three-star Program Executive Officer said.The service will also field a battery of 50-kilowatt lasers on Stryker armored vehicles by 2021,he said.A program to put a 100-plus-kilowatt laser on a heavy truck,however,is under review and may be combined with Air Force and/or Navy efforts to reach comparable power levels,Lt.Gen.Neil Thurgood told reporters in his interview.In this white paper we are suggesting a new technology as a counter-measure against such an adversary measure and threat that is aggressively being pursued by these two nations,Russia and China both tactically and strategically.We also briefly discuss possible physics and science of aerodynamics involved with these vehicles traveling between range of 5 Mach and higher,where we discuss current status and future direction driven by phenomena of plasma aerodynamics thorough possibly,weakly ionized gases(WIG)program that was started by the former Soviet Republics under AJAX Vehicle and that was direct understanding of the role of plasmas in the performance of this vehicle.展开更多
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi...In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.展开更多
Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-o...Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.展开更多
The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid st...The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid structure performances.Therefore,the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel.The TH and solid structure performances of thorium-based fuels were investigated and compared with those of UO_(2).The radial and axial power peaking factors(PPFs)for UO_(2),(^(232)Th,^(235)U)O_(2),and(^(232)Th,^(233)U)O_(2)were examined with a PWR assembly to determine the total PPF of each one.Both Gd_(2)O_(3)and Er_(2)O_(3)were tested as burnable absorbers(BAs)to manage the excess reactivity at the beginning of the fuel cycle(BOC)and reduce the total PPF.Er_(2)O_(3)resulted in a more significant reduction to the total PPF and,therefore,a greater reduction to the temperature distribution compared to Gd_(2)O_(3).Given these results,we analyzed the effects of adding Er_(2)O_(3)to thorium-based fuels on their TH and solid structure performances.展开更多
Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction mod...Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction model. Conservation equations integrated in sodium-concrete interaction model cannot be solved without a set of re-lationships that couple the equations together, and this may be done by the chemical kinetics model. Simultaneously, simulation of chemical kinetics is difficult due to complexity of the mechanism of chemical reactions between sodium and concrete. This paper describes the chemical kinetics simulation under some hypotheses. The chemical kinetics model was integrated with the conservation equations to form a computer code. Penetration depth, penetration rate, hydrogen flux, reaction heat, etc. can be provided by this code. Theoretical models and computational procedure were recounted in detail. Good agreements of an overall transient behavior were obtained in a series of sodium-concrete interaction experiment analysis. Comparison between analytical and experimental results showed that the chemical kinetics model presented in this paper was creditable and reasonable for simulating the sodium-concrete interactions.展开更多
The gas magnification of multi-gap resistive plate chamber (MRPC) is very difficult to be measured using the present instruments thoroughly in the world. The gas magnifications about ~107 were obtained in the various ...The gas magnification of multi-gap resistive plate chamber (MRPC) is very difficult to be measured using the present instruments thoroughly in the world. The gas magnifications about ~107 were obtained in the various operation-high-voltages of multi-gap resistive plate chamber (MRPC) by means of Monte-Carlo simulation and the presented experiment method.展开更多
Due to the combinatorial nature of graphs they are used easily in pure sciences and social sciences.The dynamical arrangement of vertices and their associated edges make them flexible(like liquid)to attain the shape o...Due to the combinatorial nature of graphs they are used easily in pure sciences and social sciences.The dynamical arrangement of vertices and their associated edges make them flexible(like liquid)to attain the shape of any physical structure or phenomenon easily.In the field of ICT they are used to reflect distributed component and communication among them.Mathematical chemistry is another interesting domain of applied mathematics that endeavors to display the structure of compounds that are formed in result of chemical reactions.This area attracts the researchers due to its applications in theoretical and organic chemistry.It also inspires the mathematicians due to involvement of mathematical structures.Regular or irregular bonding ability of molecules and their formation of chemical compounds can be analyzed using atomic valences(vertex degrees).Pictorial representation of these compounds helps in identifying their properties by computing different graph invariants that is really considered as an application of graph theory.This paper reflects the work on topological indices such as ev-degree Zagreb index,the first ve-degree Zagrebindex,the first ve-degree Zagrebindex,the second ve-degree Zagreb index,ve-degree Randic index,the ev-degree Randic index,the ve-degree atom-bond connectivity index,the ve-degree geometric-arithmetic index,the ve-degree harmonic index and the ve-degree sum-connectivity index for crystal structural networks namely,bismuth tri-iodide and lead chloride.In this article we have determine the exact values of ve-degree and ev-degree based topological descriptors for crystal networks.展开更多
文摘Even in small concentrations,toxic metals like lead,cadmium,and mercury are dangerous to the environment and human health.Environmental monitoring depends on precisely identifying these heavy metals,particularly cadmium ions(Cd(Ⅱ)).In this study,we present a novel screen-printed carbon electrode(SPCE)modified with single crystallineα-Fe_(2)O_(3)nano-hexagons that functions as a sensor for detecting Cd(Ⅱ).The performance of the fabricated sensor was thoroughly assessed and compared with unmodified SPCE using the voltammetric method.The crystalline structure of the synthesizedα-Fe_(2)O_(3)nano-hexagons was confirmed through XRD,and surface analysis revealed an average diameter and thickness of 86 nm and 9 nm,respectively.Theα-Fe_(2)O_(3)modified SPCE yields a 7-fold enhanced response(at pH 5.0 vs.Ag/AgCl)to Cd(Ⅱ)than bare SPCE.The modified electrode effectively detects Cd(Ⅱ)with a linear response range of up to 333.0μmol/L and a detection limit of 0.65 nmol/L under ideal circumstances.This newly fabricated sensor offers significant potential for environmental monitoring applications by providing outstanding practicality,anti-interference ability,and repeatability for detecting Cd(Ⅱ)in water samples.
文摘The present work aims to achieve a fast and accurate analytical solution of the point kinetics equations applied to subcritical reactors such as ADS (Accelerator-Driven System), assuming a linear reactivity and external source variation. It was used a new set of point kinetics equations for subcritical systems based on the model proposed by Gandini & Salvatores. In this work it was employed the integrating factor method. The analytical solution for the case of interest was obtained by using only an approximation which consists of disregarding the term of the second derivative for neutron density in relation to time when compared with the other terms of the equation. And also, it is proposed an approximation for the upper incomplete gamma function found in the solution in order to make the computational processing faster. In addition, for purposes of validation and comparison a numerical solution was obtained by the finite differences method. Finally, it can be concluded that the obtained solution is accurate and has fast numerical processing time, especially when compared with the results of numerical solution by finite difference. One can also observe that the gamma approximation used achieve a high accuracy for the usual parameters. Thus we got satisfactory results when the solution is applied to practical situations, such as a reactor startup.
文摘Fricke gel dosimetry is a critical technique for accurate radiation dose measurement, leveraging the radiation-induced oxidation of ferrous to ferric ions within a hydrogel matrix. This study aimed to advance the field by preparing and evaluating seventy-one Fricke gel dosimeter(FGD) samples with varying chemical compositions, focusing on the incorporation of benzoic acid. Two gelatin-based samples demonstrated superior sensitivity, particularly for low-dose measurements. Our findings indicated that the sample without benzoic acid exhibited a 1.75 times higher sensitivity compared to the sample containing benzoic acid, with lower limits of detection at 0.04 Gy and 0.1 Gy, respectively. Stability tests revealed temperature-dependent responses, with better performance observed under refrigerated conditions. Reproducibility was confirmed through consistent calibration curves across multiple trials. Additionally, the dosimeters' responses varied with different radiation types, underscoring the need for specific calibrations. The study concludes that while benzoic acid slightly reduces sensitivity, it provides consistent responses across various radiation energies, suggesting its potential as a beneficial additive in diverse clinical scenarios. This research contributes to the ongoing optimization of FGDs for precise radiation dose assessment.
基金Supported by National Foundation of Nature Science of China(No.10275063)
文摘Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collimator must keep a compromise between spatial resolution and sensitivity.In order to design a pinhole collimator with an optimized sensitivity and spatial resolution,the spatial resolution and the geometric sensitivity response as a function of the source to collimator distance has been obtained by means of Monte-Carlo simulation for a small field of view gamma camera with a pinhole collimator of various-hole diameters.The results show that the camera with pinhole of 1 mm,1.5 mm and 2 mm diameter has respectively spatial resolution of 1.5 mm,2.25 mm and 3 mm and geometric sensitivity of 0.016%,0.022%and 0.036%,while the source to collimator distance is 3 cm.We chose the pinhole collimator with hole diameter size of 1.2 mm for our the gamma camera designed based on the trade-off between sensitivity and resolution.
基金supported by the National Natural Science Foundation of China(52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(2022CXGC020405)+3 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production System-Subject 4“Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology”[MC-201901-S01-04]the Fundamental Research Funds for the Central Universities(20CX02410A)the Development Fund of Shandong Key Laboratory of Oil&Gas Storage and Transportation SafetyCNPq,CAPES and FAPERJ of Brazil。
文摘The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.
文摘When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.
文摘In this study,COMSOL v5.2 Multiphysics software was utilized to perform coupled neutronics and thermal–hydraulics simulations of a molten salt fast reactor,and the SCALE v6.1 code package was utilized to generate the homogenized cross-section data library.The library’s 238 cross-section groups were categorized into nine groups for the simulations in this study.The results of the COMSOL model under no fuel flow conditions were verified using the SCALE v6.1 code results,and the results of the neutronics and thermal–hydraulics simulations were compared to the results of previously published studies.The results indicated that the COMSOL model that includes the cross-section library generated by the SCALE v6.1 code package is suitable for the steady-state analysis and design assessment of molten salt fast reactors.Subsequently,this model was utilized to investigate the neutronics and thermal–hydraulics behaviors of the reactor.Multiple designs were simulated and analyzed in this model,and the results indicated that even if the wall of the core is curved,hot spots occur in the upper and lower portions of the core’s center near the reflectors.A new design was proposed that utilizes a flow rate distribution system,and the simulation results of this design showed that the maximum temperature in the core was approximately 1032 K and no hot spots occurred.
基金Supported by Fundao de Amparo a Pesquisa do Estado de Minas Gerais and Coordenao de Aperfeioamento de Pessoal de Nível Superior
文摘AIM:To evaluate inflammatory activity in patients with Crohn's disease (CD) using technetium-99m-hexamethylpropyleneamine oxime (99mTc-HMPAO) granulocyte scintigraphy.METHODS: Twenty patients (7 male and 13 female) with CD and five healthy volunteers were selected for 99mTc-HMPAO granulocyte scintigraphy. The Crohn's Disease Activity Index (CDAI), blood tests and C-reactive protein (CRP) of each patient were performed 7 d before the scintigraphic images. The leukocytes were labeled according to the International Society of Radiolabeled Blood Elements (ISORBE) consensus protocol and the scintigraphic images, including single photon emission computed tomography, were obtained 30 min and 2 h after injection of the radiolabeled leukocytes.RESULTS:The labeling yield of the leukocytes with the lipophilic complex 99mTc-HMPAO was 55.0%±10%. Six of the 20 patients (30%) presented congruent results for the three parameters investigated (CDAI, Scintigraphic Index and CRP). On the other hand, 14 patients (70%) did not show congruent results. There was no significant correlation between the indices analyzed according to the Spearman test (P>0.05,n=20).CONCLUSION: The results suggest that 99mTc-HMPAO-labeled leukocyte scintigraphy could be important for determining inflammatory activity in CD even in the absence of clinical symptoms.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant No.2022CXGC020405)+1 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production SystemSubject 4:Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)CNPq,CAPES and FAPERJ of Brazil。
文摘Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.
基金the contribution of the Slovak Research and Development Agency under the project APVV-20-0010financial contributions from the Scientifc Grant Agency of the Ministry of Education,Science,Research and Sport of the Slovak Republic and the Slovak Academy of Sciences,grant numbers VEGA 1/0382/20 and VEGA 1/0395/20the European Regional Development Fund project No.ITMS2014+:313011W085。
文摘The development of structural materials resistant to harsh radiation environments requires an in-depth understanding of the early stage of the aging processes.In radiation environments with high transmutation helium production rates such as in fusion and spallation applications,even materials with otherwise acceptable radiation stability may suffer from radiation embrittlement related to helium bubble formation.While theoretical modeling of helium-assisted cavity nucleation in pure metals and simple alloys provides some useful guidelines at the atomic scale level,these,however,do not overlap with the size resolution of available experimental techniques.In this study,we employed slow positron beam spectroscopy to characterize the nucleation and growth of nano-scale helium bubbles in martensitic steels strengthened by thermodynamically stable nano-oxide dispersoids.In combination with transmission electron microscopy,we experimentally characterized the evolution of helium bubbles from small clusters of radiation-induced vacancies to large cavities well resolvable by TEM.Superior radiation resistance of oxide-dispersion strengthened steels dominates only in the early stages of bubble evolution,where positron lifetime measurements provide a missing piece of the microstructural puzzle conventionally constructed by TEM.
文摘Speed is the new stealth and earlier this week America’s top nuclear commander described a grim scenario for U.S.forces facing off against hypersonic weapons.“We do not have any defense that could deny the employment of such a weapon against us,”Air Force Gen.John Hyten,commander of U.S.Strategic Command,told the Senate Armed Services Committee on Tuesday March 20,2018.Russian and Chinese are aggressively developing new weapons that travel at Mach 5 or higher,which is at least five times faster than speed of sound(hypersonic).These weapons travel in excess of 3,600 miles per hour(1 mile per second)and currently,no military possesses a credible defense.Finding,tracking and intercepting something that fast is unprecedented.Given that Russia and China have invested heavily in advanced defensive technologies that now hold most of our traditional forms of power projection at risk,this is a significant advantage—it is one that would impose major costs upon a defending nation.Recently,according to the director of the Army’s Rapid Capabilities and Critical Technologies Office(ARCCTO),The Army will field a battery of truck-borne hypersonic missiles in 2023,with a contract award in August,the service’s new three-star Program Executive Officer said.The service will also field a battery of 50-kilowatt lasers on Stryker armored vehicles by 2021,he said.A program to put a 100-plus-kilowatt laser on a heavy truck,however,is under review and may be combined with Air Force and/or Navy efforts to reach comparable power levels,Lt.Gen.Neil Thurgood told reporters in his interview.In this white paper we are suggesting a new technology as a counter-measure against such an adversary measure and threat that is aggressively being pursued by these two nations,Russia and China both tactically and strategically.We also briefly discuss possible physics and science of aerodynamics involved with these vehicles traveling between range of 5 Mach and higher,where we discuss current status and future direction driven by phenomena of plasma aerodynamics thorough possibly,weakly ionized gases(WIG)program that was started by the former Soviet Republics under AJAX Vehicle and that was direct understanding of the role of plasmas in the performance of this vehicle.
文摘In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.
文摘Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.
文摘The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid structure performances.Therefore,the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel.The TH and solid structure performances of thorium-based fuels were investigated and compared with those of UO_(2).The radial and axial power peaking factors(PPFs)for UO_(2),(^(232)Th,^(235)U)O_(2),and(^(232)Th,^(233)U)O_(2)were examined with a PWR assembly to determine the total PPF of each one.Both Gd_(2)O_(3)and Er_(2)O_(3)were tested as burnable absorbers(BAs)to manage the excess reactivity at the beginning of the fuel cycle(BOC)and reduce the total PPF.Er_(2)O_(3)resulted in a more significant reduction to the total PPF and,therefore,a greater reduction to the temperature distribution compared to Gd_(2)O_(3).Given these results,we analyzed the effects of adding Er_(2)O_(3)to thorium-based fuels on their TH and solid structure performances.
基金Supported by National Natural Science Foundation of China (Grant No. 19785002)
文摘Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction model. Conservation equations integrated in sodium-concrete interaction model cannot be solved without a set of re-lationships that couple the equations together, and this may be done by the chemical kinetics model. Simultaneously, simulation of chemical kinetics is difficult due to complexity of the mechanism of chemical reactions between sodium and concrete. This paper describes the chemical kinetics simulation under some hypotheses. The chemical kinetics model was integrated with the conservation equations to form a computer code. Penetration depth, penetration rate, hydrogen flux, reaction heat, etc. can be provided by this code. Theoretical models and computational procedure were recounted in detail. Good agreements of an overall transient behavior were obtained in a series of sodium-concrete interaction experiment analysis. Comparison between analytical and experimental results showed that the chemical kinetics model presented in this paper was creditable and reasonable for simulating the sodium-concrete interactions.
基金National Natural Science Foundation of China (10576022)
文摘The gas magnification of multi-gap resistive plate chamber (MRPC) is very difficult to be measured using the present instruments thoroughly in the world. The gas magnifications about ~107 were obtained in the various operation-high-voltages of multi-gap resistive plate chamber (MRPC) by means of Monte-Carlo simulation and the presented experiment method.
基金the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.RG-29-135-38.
文摘Due to the combinatorial nature of graphs they are used easily in pure sciences and social sciences.The dynamical arrangement of vertices and their associated edges make them flexible(like liquid)to attain the shape of any physical structure or phenomenon easily.In the field of ICT they are used to reflect distributed component and communication among them.Mathematical chemistry is another interesting domain of applied mathematics that endeavors to display the structure of compounds that are formed in result of chemical reactions.This area attracts the researchers due to its applications in theoretical and organic chemistry.It also inspires the mathematicians due to involvement of mathematical structures.Regular or irregular bonding ability of molecules and their formation of chemical compounds can be analyzed using atomic valences(vertex degrees).Pictorial representation of these compounds helps in identifying their properties by computing different graph invariants that is really considered as an application of graph theory.This paper reflects the work on topological indices such as ev-degree Zagreb index,the first ve-degree Zagrebindex,the first ve-degree Zagrebindex,the second ve-degree Zagreb index,ve-degree Randic index,the ev-degree Randic index,the ve-degree atom-bond connectivity index,the ve-degree geometric-arithmetic index,the ve-degree harmonic index and the ve-degree sum-connectivity index for crystal structural networks namely,bismuth tri-iodide and lead chloride.In this article we have determine the exact values of ve-degree and ev-degree based topological descriptors for crystal networks.