A series of transparent,intrinsically flame-retardant,and impact-resistant poly(carbonates-b-siloxanes)were synthesized by incorporating Schiff-base modified polysiloxanes(DMS-Schiff)and naphthalene-sulfonate units in...A series of transparent,intrinsically flame-retardant,and impact-resistant poly(carbonates-b-siloxanes)were synthesized by incorporating Schiff-base modified polysiloxanes(DMS-Schiff)and naphthalene-sulfonate units into the polycarbonate(PC)chain.In addition to high transparency,the resultant copolymers(SS-co-PC5,SS-co-PC9,SS-co-PC14,and SS-co-PC20)exhibited remarkable improvements in fire safety and mechanical performance.Compared to pure PC,these copolymers demonstrated significantly enhanced limiting oxygen index(LOI,up to 34.5%)and a UL-94 V-0 rating under a thickness of only 1.6 mm.The incorporation of the polysiloxane blocks not only improved flame retardancy but also enhanced the impact strength,with SS-co-PC9 showing a 48%increase in elongation at break and a 38%rise in impact toughness compared to pure PC.In addition,SS-co-PC9 presented high mechanical strength.The synergistic effects between the naphthalene-sulfonate and polysiloxane blocks,along with the well-controlled polysiloxane phase separation(sulfonate units enabled lower processing viscosity of copolymers),led to superior comprehensive performance.These findings provide a promising pathway to create high-performance copolycarbonates for real-world applications.展开更多
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin...Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.展开更多
As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined fact...As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.展开更多
The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.Th...The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.The rise of artificial intelligence provides a way to meet the above challenges.This article elaborates on research overview of artificial neural network(ANN)and its prediction for concrete strength,deformation,and durability.The focus is on the comparative analysis of the prediction accuracy for different types of neural networks.Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the practical engineering applications.To further improve the applicability of ANN in concrete,the model can consider the combination of multiple algorithms and the expansion of data samples.The review can provide new research ideas for development of concrete performance prediction.展开更多
The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental condit...The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental conditions such as load,ambient temperature,and illumination intensity,which provides theoretical support for practical engineering.The experimental results indicate that when the ambient temperature is controlled at 25℃and the illumination intensity is 30 W/m^(2),the sample prepared by soaking recycled aggregates in a 0.8%TiO_(2)/LDHs suspension exhibits the highest photocatalytic degradation rate for NO gas,reaching 72.54%.Further investigation on the influence of environmental temperature reveals that,at 25℃,the maximum photocatalytic degradation rate for NO gas is 72.9%.Moreover,at an illumination intensity of 40 W/m^(2),the maximum photocatalytic degradation rate for NO gas is 87.08%.Additionally,after three repeated photocatalytic tests,the sample demonstrates good stability,with a photocatalytic degradation rate of 58%.The nitrogen content in the eluent obtained from soaking the sample was determined to be 0.0022 mol/L,with a recovery rate of 80%.The adsorption experiment demonstrates that the sample exhibits a favorable adsorption effect on nitrate ions,reaching a maximum of 56.8%.展开更多
Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the ...Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.展开更多
With the goal of constructing a carbon‐free energy cycle,proton‐exchange membrane(PEM)water electrolysis is a promising technology that can be integrated effectively with renewable energy resources to produce high‐...With the goal of constructing a carbon‐free energy cycle,proton‐exchange membrane(PEM)water electrolysis is a promising technology that can be integrated effectively with renewable energy resources to produce high‐purity hydrogen.IrO2,as a commercial electrocatalyst for the anode side of a PEM water electrolyzer,can both overcome the high corrosion conditions and exhibit efficient catalytic performance.However,the high consumption of Ir species cannot meet the sustainable development and economic requirements of this technology.Accordingly,it is necessary to understand the OER catalytic mechanisms for Ir species,further designing new types of low‐iridium catalysts with high activity and stability to replace IrO2.In this review,we first summarize the related catalytic mechanisms of the acidic oxygen evolution reaction(OER),and then provide general methods for measuring the catalytic performance of materials.Second,we present the structural evolution results of crystalline IrO2 and amorphous IrOx using in situ characterization techniques under catalytic conditions to understand the common catalytic characteristics of the materials and the possible factors affecting the structural evolution characteristics.Furthermore,we focus on three types of common low‐iridium catalysts,including heteroatom‐doped IrO2(IrOx)‐based catalysts,perovskite‐type iridium‐based catalysts,and pyrochlore‐type iridium‐based catalysts,and try to correlate the structural features with the intrinsic catalytic performance of materials.Finally,at the end of the review,we present the unresolved problems and challenges in this field in an attempt to develop effective strategies to further balance the catalytic activity and stability of materials under acidic OER catalytic conditions.展开更多
Driven by global environmental concerns,many efforts have been made to develop halogen-free flame retardants for rigid polyurethane foam(RPUF).These environmentally benign flame retardants are mainly divided into(i)re...Driven by global environmental concerns,many efforts have been made to develop halogen-free flame retardants for rigid polyurethane foam(RPUF).These environmentally benign flame retardants are mainly divided into(i)reactive,(ii)additive,and(iii)coating types.The last decade has witnessed great progress of these three strategies,which enhance the fire safety of RPUF and maintain even improve the thermal insulation properties.This comprehensive review focuses on the up-to-date design of the reactive,additive,and coating flame retardants,and their effects on flame retardancy and thermal conductivity of RPUF.Moreover,the practical applications of the as-prepared flame-retardant RPUFs are highlighted.Finally,key challenges associated with these three kinds of flame retardants are discussed and future research opportunities are also proposed.展开更多
High-performance flexible one-dimensional(1D)electrochemical energy storage devices are crucial for the applications of wearable electronics.Although much progress on various 1D energy storage devices has been made,ch...High-performance flexible one-dimensional(1D)electrochemical energy storage devices are crucial for the applications of wearable electronics.Although much progress on various 1D energy storage devices has been made,challenges involving fabrication cost,scalability,and efficiency remain.Herein,a highperformance flexible all-fiber zinc-ion battery(ZIB)is fabricated using a low-cost,scalable,and efficient continuous wet-spinning method.Viscous composite inks containing cellulose nanofibers/carbon nanotubes(CNFs/CNTs)binary composite network and either manganese dioxide nanowires(MnO_(2) NWs)or commercial Zn powders are utilized to spinning fiber cathodes and anodes,respectively.MnO_(2) NWs and Zn powders are uniformly dispersed in the interpenetrated CNFs/CNTs fibrous network,leading to homogenous composite inks with an ideal shear-thinning property.The obtained fiber electrodes demonstrate favorable uniformity and flexibility.Benefiting from the well-designed electrodes,the assembled flexible fiber-shaped ZIB delivers a high specific capacity of 281.5 m Ah g^(-1) at 0.25 A g^(-1) and displays excellent cycling stability over 400 cycles.Moreover,the wet-spun fiber-shaped ZIBs achieve ultrahigh gravimetric and volumetric energy densities of 47.3 Wh kg^(-1) and 131.3 m Wh cm^(-3),respectively,based on both cathode and anode and maintain favorable stability even after 4000 bending cycles.This work offers a new concept design of 1D flexible ZIBs that can be potentially incorporated into commercial textiles for wearable and portable electronics.展开更多
Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective...Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective in PLA, but their high addition loading usually decreases the mechanical strength of the PLA bulk. For polyphosphoramides, despite high fire-retardant efficiency, their chemical synthesis often generates chemical wastes as byproducts. Herein, we report an atom-economic and highly efficient oligomeric P/N fire retardant (APN) prepared using a mild Michael addition polymerization with no byproducts. Using only 3 wt% APN, the resulting PLA exhibits desired fire retardancy including a UL-94 V-0 rating and a limiting oxygen index of 37.6%. Furthermore, the toughness of the fire-retardant PLA increases by 85% compared to pure PLA, with both tensile strength and thermal stability preserved. This work offers an atom-economic strategy for synthesizing highly efficient P/N fire retardants for use in the creation of fire-resistant PLA with robust mechanical properties.展开更多
Iron chalcogenides have attracted great interest as potential substitutes of nature enzymes in the colorimetric biological sensing due to their unique chemodynamic characteristics.Herein,we report the preparation of u...Iron chalcogenides have attracted great interest as potential substitutes of nature enzymes in the colorimetric biological sensing due to their unique chemodynamic characteristics.Herein,we report the preparation of ultrathin Fe S nanosheets(NSs)by a simple one-pot hydrothermal method and the prepared Fe S NSs exhibit strong Fenton-reaction activity to catalyze hydrogen peroxide(H_(2)O_(2))for generation of hydroxyl radical(^(·)OH).Based on the chromogenic reaction of resultant^(·)OH with 3,3,5,5-tetramethylbenzidine(TMB),we develop colorimetric biosensors for highly sensitive detection of H_(2)O_(2)and glutathione(GSH).The fabricated biosensors show wide linear ranges for the detection of H_(2)O_(2)(5–150μmol/L)and GSH(5–50μmol/L).Their detection limits for H_(2)O_(2)and GSH reach as low as0.19μmol/L and 0.14μmol/L,respectively.The experimental results of sensing intracellular H_(2)O_(2)and GSH demonstrate that this colorimetric method can realize the accurate detection of H_(2)O_(2)and GSH in normal cells(L02 and 3T3)and cancer cells(MCF-7 and He La).Our results have demonstrated that the synthesized Fe S NSs is a promising material to construct colorimetric biosensors for the sensitive detection of H_(2)O_(2)and GSH,holding great promising for medical diagnosis in cancer therapy.展开更多
Because of the high cost of cultivating urease-producing bacteria(UPB),this paper proposes soybean-urease-induced carbonate precipitation(SUICP)as a novel biocement for treatment of nickel contaminants and cementation...Because of the high cost of cultivating urease-producing bacteria(UPB),this paper proposes soybean-urease-induced carbonate precipitation(SUICP)as a novel biocement for treatment of nickel contaminants and cementation of sandy soil.We found the optimal soaking time and soybean-powder content to be 30 min and 130 g/L,respectively,based on a standard of 5 U of urease activity.The most efficient removal of nickel ions is obtained with an ideal mass ratio of urea to nickel ions to soybean-powder filtrate(SPF)of 1:2.4:20.The removal efficiency of nickel ions can reach 89.42%when treating 1 L of nickel-ion solution(1200 mg/L with the optimal mass ratio).In incinerated bottom ash(IBA),the removal efficiency of nickel ions is 99.33%with the optimal mass ratio.In biocemented sandy soil,the average unconfined compressive strength(UCS)of sand blocks cemented with soybean urease-based biocement can reach 118.89 kPa when the cementation level is 3.Currently,the average content of CaCO_(3)in sand blocks is 2.52%.As a result,the SUICP process can be applied to remove heavy metal ions in wastewater or solid waste and improve the mechanical properties of soft soil foundations.展开更多
A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These...A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These CCFs were utilized as free-standing lithium-ion battery(LIB)anodes.Optimizing car-bonization temperature reveals that the CCFs exhibit a one-dimensional solid linear structure with a uni-form distribution of graphite-like microcrystals.These fibers possess a dense structure and smooth surface,with averaging diameter from approximately 125.0 to 210.0 nm at carbonization temperatures ranging from 600 to 900℃.During electrospinning and carbonization,the aromatic rings enriched in bituminous coal crosslink with PAN chains,forming a robust three-dimensional(3D)framework.This 3D microstructure significantly enhances the flexibility and tensile strength of CCFs,while increasing the graphite-like sp^(2)microcrystalline carbon content,thus improving electrical conductivity.The CCFs carbonized at 700℃demonstrate an optimal balance of sp^(3)amorphous and sp^(2)graphite-like carbons.The average diameter of CCFs-700 is 177 nm and the specific surface area(SSA)is 7.2 m^(2)g^(-1).Additionally,the fibers contain oxygen-containing functional groups,as well as nitrogen-containing func-tional groups,including pyridinic nitrogen and pyrrolic nitrogen.Owing to its characteristics,the CCFs-700 showcases remarkable electrochemical performance,delivering a high reversible capacity of 631.4 mAh g^(-1).CCFs-700 also exhibit outstanding cycle stability,which retains approximately all of their first capacity(400.1 mAh g^(-1))after 120 cycles.This research offers an economical yet scalable approach for producing flexible and self-supporting anodes for LIBs that do not require current collectors,binders and conductive additives,thereby simplifying the electrode fabrication process.展开更多
The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.T...The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.展开更多
Two-dimensional porous carbon nanosheets(PCNSs)are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures.Herein,using naturally abundan...Two-dimensional porous carbon nanosheets(PCNSs)are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures.Herein,using naturally abundant and biocompatible sodium humate(SH)as the precursor,PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice-templating-induced puzzle coupled with a carbonization strategy.Such obtained SH-derived PCNSs(SH-PCNSs)possess a hierarchical porous structure dominated by mesopores having a specific surface area(~127.192 g^(−1)),pore volume(~0.134 cm3 g^(−1)),sheet-like morphology(~2.18nm in thickness),and nitrogen/oxygen-containing functional groups.Owing to these merits,the SH-PCNSs present impressive Li-ion storage characteristics,including high reversible capacity(1011mAh g^(−1) at 0.1 A g^(−1)),excellent rate capability(465mAh g^(−1) at 5 A g^(−1)),and superior cycle stability(76.8%capacitance retention after 1000 cycles at 5 A g^(−1)).It is noted that the SH-PCNSs prepared from the kilogram-scale production procedure possess comparable electrochemical properties.Furthermore,coupling with a LiNi1/3Co1/3Mn1/3O2 cathode,the full cells deliver a high capacity of 167mAh g^(−1) at 0.2A g^(−1) and exhibit an outstanding energy density of 128.8Whkg^(−1),highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.展开更多
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl...In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.展开更多
With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital wor...With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital worlds and aid the digital transformation of the civil engineering industry.In this paper,605 documents obtained from the search werefirst analysed using CiteSpace for literature visualisation,and an author co-occurrence network,a keyword co-occurrence network,and a keyword clustering set were obtained.Next,through a literature review of 86 papers,this paper summarises the current status of DT application in civil engineering based on a review of the origins,concepts,and implementation techniques of DTs,and it introduces the application of DTs in the full project lifecycle.This study shows that DTs have great potential to address many of the challenges faced by civil engineering.In this regard,the paper also presents some thoughts on the future directions of DT research.展开更多
In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant dens...In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant density functionals are adopted,i.e.,those with nonlinear self couplings(NL3,PK1,TM1,GM1,MTVTC)and density-dependent couplings(DD-LZ1,DDME-X,PKDD,DDME2,DD2,TW99).It is found that the EOSs generally coincide with each other at nb■10^(-4)fm^(-3)and 0.1 fm^(-3)■n_(b)■0.3 fm^(-3),while in other density regions they are sensitive to the effective interactions between nucleons.By adopting functionals with a larger slope of symmetry energy L,the curvature parameter K_(sym)and neutron drip density generally increases,while the droplet size,proton number of nucleus,core-crust transition density,and onset density of non-spherical nuclei,decrease.All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit,while those of DD2,DD-LZ1,DD-ME2,and DDME-X predict optimum neutron star radii according to the observational constraints.Nevertheless,the corresponding skewness coefficients J are much larger than expected,while only the functionals MTVTC and TW99 meet the start-of-art constraints on J.More accurate measurements on the radius of PSR J0740+6620 and the maximum mass of neutron stars are thus essential to identify the functional that satisfies all constraints from nuclear physics and astrophysical observations.Approximate linear correlations between neutron stars’radii at M=1.4M⊙and 2M⊙,the slope L and curvature parameter K_(sym)of symmetry energy are observed as well,which are mainly attributed to the curvature-slope correlations in the functionals adopted here.The results presented here are applicable for investigations of the structures and evolutions of compact stars in a unified manner.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52403117,52173083,51991355,and 52173082)the 2024 Ningbo Yongjiang Talent Programme,the Natural Science Foundation of Zhejiang Province(No.LY24E030007)the Australian Research Council(No.DE230100616).
文摘A series of transparent,intrinsically flame-retardant,and impact-resistant poly(carbonates-b-siloxanes)were synthesized by incorporating Schiff-base modified polysiloxanes(DMS-Schiff)and naphthalene-sulfonate units into the polycarbonate(PC)chain.In addition to high transparency,the resultant copolymers(SS-co-PC5,SS-co-PC9,SS-co-PC14,and SS-co-PC20)exhibited remarkable improvements in fire safety and mechanical performance.Compared to pure PC,these copolymers demonstrated significantly enhanced limiting oxygen index(LOI,up to 34.5%)and a UL-94 V-0 rating under a thickness of only 1.6 mm.The incorporation of the polysiloxane blocks not only improved flame retardancy but also enhanced the impact strength,with SS-co-PC9 showing a 48%increase in elongation at break and a 38%rise in impact toughness compared to pure PC.In addition,SS-co-PC9 presented high mechanical strength.The synergistic effects between the naphthalene-sulfonate and polysiloxane blocks,along with the well-controlled polysiloxane phase separation(sulfonate units enabled lower processing viscosity of copolymers),led to superior comprehensive performance.These findings provide a promising pathway to create high-performance copolycarbonates for real-world applications.
基金support from the National Natural Science Foundation of China(62275057)the Guangxi Natural Science Foundation(2023GXNSFFA026004 and 2022GXNSFDA035066)+2 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2024034)Natural Science Foundation of Ningbo under grant(2022J149)Natural Science Foundation of Ningbo under grant(2022A-230-G)
文摘Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.
基金financially supported by the Scientific Research Projects of the Education Department of Zhejiang Province(Grant No.Y202454744)the Ningbo Public Welfare Science and Technology Project(Grant Nos.2023S007 and 2023S165)the Key Research and Development Program of Zhejiang(Grant No.2023C03183).
文摘As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.
基金funded by the Ningbo Construction Research Project(Nos.2024-23,2024-20)the National Natural Science Foundation of China(No.52478281)the Ningbo Public Welfare Science and Technology Project(No.2024S077).
文摘The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.The rise of artificial intelligence provides a way to meet the above challenges.This article elaborates on research overview of artificial neural network(ANN)and its prediction for concrete strength,deformation,and durability.The focus is on the comparative analysis of the prediction accuracy for different types of neural networks.Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the practical engineering applications.To further improve the applicability of ANN in concrete,the model can consider the combination of multiple algorithms and the expansion of data samples.The review can provide new research ideas for development of concrete performance prediction.
基金Funded by the National Natural Science Foundation of China(No.52478281)the Natural Science Foundation of Zhejiang Province(No.LZ22E080003)the Science and Technology Project of Zhejiang Provincial Department of Transport(No.202225)。
文摘The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental conditions such as load,ambient temperature,and illumination intensity,which provides theoretical support for practical engineering.The experimental results indicate that when the ambient temperature is controlled at 25℃and the illumination intensity is 30 W/m^(2),the sample prepared by soaking recycled aggregates in a 0.8%TiO_(2)/LDHs suspension exhibits the highest photocatalytic degradation rate for NO gas,reaching 72.54%.Further investigation on the influence of environmental temperature reveals that,at 25℃,the maximum photocatalytic degradation rate for NO gas is 72.9%.Moreover,at an illumination intensity of 40 W/m^(2),the maximum photocatalytic degradation rate for NO gas is 87.08%.Additionally,after three repeated photocatalytic tests,the sample demonstrates good stability,with a photocatalytic degradation rate of 58%.The nitrogen content in the eluent obtained from soaking the sample was determined to be 0.0022 mol/L,with a recovery rate of 80%.The adsorption experiment demonstrates that the sample exhibits a favorable adsorption effect on nitrate ions,reaching a maximum of 56.8%.
基金supported by the Natural Science Foundation of Ningbo,China(2022J149)the Natural Science Foundation of Zhejiang Province,China(LY22E020010,LTGS24B030002)+1 种基金the Ningbo Science and Technology Project,China(2022-DST-004,2022A-230G,2024Z242)the National Key Research and Development Program of China,China(2021YFF0500501)。
文摘Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.
文摘With the goal of constructing a carbon‐free energy cycle,proton‐exchange membrane(PEM)water electrolysis is a promising technology that can be integrated effectively with renewable energy resources to produce high‐purity hydrogen.IrO2,as a commercial electrocatalyst for the anode side of a PEM water electrolyzer,can both overcome the high corrosion conditions and exhibit efficient catalytic performance.However,the high consumption of Ir species cannot meet the sustainable development and economic requirements of this technology.Accordingly,it is necessary to understand the OER catalytic mechanisms for Ir species,further designing new types of low‐iridium catalysts with high activity and stability to replace IrO2.In this review,we first summarize the related catalytic mechanisms of the acidic oxygen evolution reaction(OER),and then provide general methods for measuring the catalytic performance of materials.Second,we present the structural evolution results of crystalline IrO2 and amorphous IrOx using in situ characterization techniques under catalytic conditions to understand the common catalytic characteristics of the materials and the possible factors affecting the structural evolution characteristics.Furthermore,we focus on three types of common low‐iridium catalysts,including heteroatom‐doped IrO2(IrOx)‐based catalysts,perovskite‐type iridium‐based catalysts,and pyrochlore‐type iridium‐based catalysts,and try to correlate the structural features with the intrinsic catalytic performance of materials.Finally,at the end of the review,we present the unresolved problems and challenges in this field in an attempt to develop effective strategies to further balance the catalytic activity and stability of materials under acidic OER catalytic conditions.
基金financially supported by the Australian Research Council(Nos.DP190102992,FT190100188)the National Natural Science Foundation of China(No.51873196)the Key Research and Development Projects of Zhejiang Province(No.2019C01098)。
文摘Driven by global environmental concerns,many efforts have been made to develop halogen-free flame retardants for rigid polyurethane foam(RPUF).These environmentally benign flame retardants are mainly divided into(i)reactive,(ii)additive,and(iii)coating types.The last decade has witnessed great progress of these three strategies,which enhance the fire safety of RPUF and maintain even improve the thermal insulation properties.This comprehensive review focuses on the up-to-date design of the reactive,additive,and coating flame retardants,and their effects on flame retardancy and thermal conductivity of RPUF.Moreover,the practical applications of the as-prepared flame-retardant RPUFs are highlighted.Finally,key challenges associated with these three kinds of flame retardants are discussed and future research opportunities are also proposed.
基金financially supported by the National Science Fund for Distinguished Young Scholars(52025133)the Beijing Natural Science Foundation(JQ18005)+7 种基金the Tencent Foundation through the XPLORER PRIZE,the National Key R&D Program of China(2017YFA0206701)the BIC-ESAT fundingthe financial support of the Central Universities(2232020D-13)the Shanghai Sailing Program(20YF1400700)the National Natural Science Foundation of China(52003045)the financial support from the Young Elite Scientist Sponsorship Program by CAST(2019QNRC001)the“1000-Plan program”of Shaanxi Provincethe“Young Talent Support Plan”of Xi’an Jiaotong University。
文摘High-performance flexible one-dimensional(1D)electrochemical energy storage devices are crucial for the applications of wearable electronics.Although much progress on various 1D energy storage devices has been made,challenges involving fabrication cost,scalability,and efficiency remain.Herein,a highperformance flexible all-fiber zinc-ion battery(ZIB)is fabricated using a low-cost,scalable,and efficient continuous wet-spinning method.Viscous composite inks containing cellulose nanofibers/carbon nanotubes(CNFs/CNTs)binary composite network and either manganese dioxide nanowires(MnO_(2) NWs)or commercial Zn powders are utilized to spinning fiber cathodes and anodes,respectively.MnO_(2) NWs and Zn powders are uniformly dispersed in the interpenetrated CNFs/CNTs fibrous network,leading to homogenous composite inks with an ideal shear-thinning property.The obtained fiber electrodes demonstrate favorable uniformity and flexibility.Benefiting from the well-designed electrodes,the assembled flexible fiber-shaped ZIB delivers a high specific capacity of 281.5 m Ah g^(-1) at 0.25 A g^(-1) and displays excellent cycling stability over 400 cycles.Moreover,the wet-spun fiber-shaped ZIBs achieve ultrahigh gravimetric and volumetric energy densities of 47.3 Wh kg^(-1) and 131.3 m Wh cm^(-3),respectively,based on both cathode and anode and maintain favorable stability even after 4000 bending cycles.This work offers a new concept design of 1D flexible ZIBs that can be potentially incorporated into commercial textiles for wearable and portable electronics.
基金the National Natural Science Foundation of China(No.21801097)the Australian Re-search Council(Nos.DP190102992 and FT190100188).
文摘Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective in PLA, but their high addition loading usually decreases the mechanical strength of the PLA bulk. For polyphosphoramides, despite high fire-retardant efficiency, their chemical synthesis often generates chemical wastes as byproducts. Herein, we report an atom-economic and highly efficient oligomeric P/N fire retardant (APN) prepared using a mild Michael addition polymerization with no byproducts. Using only 3 wt% APN, the resulting PLA exhibits desired fire retardancy including a UL-94 V-0 rating and a limiting oxygen index of 37.6%. Furthermore, the toughness of the fire-retardant PLA increases by 85% compared to pure PLA, with both tensile strength and thermal stability preserved. This work offers an atom-economic strategy for synthesizing highly efficient P/N fire retardants for use in the creation of fire-resistant PLA with robust mechanical properties.
基金the Key Grant for Special Professors in Jiangsu Province(No.RK030STP18001)the National Postdoctoral Program for Innovative Talents(No.BX20190156)+1 种基金the China Postdocoral Science Foundation funded project(No.2021M691654)the“1311 Talents Program”of Nanjing University of Posts and Telecommunications,the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(Nos.NY218150,NY221042)。
文摘Iron chalcogenides have attracted great interest as potential substitutes of nature enzymes in the colorimetric biological sensing due to their unique chemodynamic characteristics.Herein,we report the preparation of ultrathin Fe S nanosheets(NSs)by a simple one-pot hydrothermal method and the prepared Fe S NSs exhibit strong Fenton-reaction activity to catalyze hydrogen peroxide(H_(2)O_(2))for generation of hydroxyl radical(^(·)OH).Based on the chromogenic reaction of resultant^(·)OH with 3,3,5,5-tetramethylbenzidine(TMB),we develop colorimetric biosensors for highly sensitive detection of H_(2)O_(2)and glutathione(GSH).The fabricated biosensors show wide linear ranges for the detection of H_(2)O_(2)(5–150μmol/L)and GSH(5–50μmol/L).Their detection limits for H_(2)O_(2)and GSH reach as low as0.19μmol/L and 0.14μmol/L,respectively.The experimental results of sensing intracellular H_(2)O_(2)and GSH demonstrate that this colorimetric method can realize the accurate detection of H_(2)O_(2)and GSH in normal cells(L02 and 3T3)and cancer cells(MCF-7 and He La).Our results have demonstrated that the synthesized Fe S NSs is a promising material to construct colorimetric biosensors for the sensitive detection of H_(2)O_(2)and GSH,holding great promising for medical diagnosis in cancer therapy.
基金supported by the Opening Funds of Jiangsu Key Laboratory of Construction Materials(No.CM2018-02)the Key Project of Natural Science Foundation of Zhejiang Province,China(No.LZ22E080003)the General Project of Natural Science Foundation of Zhejiang Province,China(No.LY20E080002).
文摘Because of the high cost of cultivating urease-producing bacteria(UPB),this paper proposes soybean-urease-induced carbonate precipitation(SUICP)as a novel biocement for treatment of nickel contaminants and cementation of sandy soil.We found the optimal soaking time and soybean-powder content to be 30 min and 130 g/L,respectively,based on a standard of 5 U of urease activity.The most efficient removal of nickel ions is obtained with an ideal mass ratio of urea to nickel ions to soybean-powder filtrate(SPF)of 1:2.4:20.The removal efficiency of nickel ions can reach 89.42%when treating 1 L of nickel-ion solution(1200 mg/L with the optimal mass ratio).In incinerated bottom ash(IBA),the removal efficiency of nickel ions is 99.33%with the optimal mass ratio.In biocemented sandy soil,the average unconfined compressive strength(UCS)of sand blocks cemented with soybean urease-based biocement can reach 118.89 kPa when the cementation level is 3.Currently,the average content of CaCO_(3)in sand blocks is 2.52%.As a result,the SUICP process can be applied to remove heavy metal ions in wastewater or solid waste and improve the mechanical properties of soft soil foundations.
基金supported by the National Natural Science Foundation of China(Nos.52474290,52274261,52074109,52304284)the Open Subjects of Henan Provincial Key Laboratory of Coal Green Conversion(No.CGCF202201)+1 种基金the Key Scientific and Technological Project of Henan Province(No.242102240008)the Key Scientific Research Projects of Colleges and Universities in Henan Province(No.24A440003).
文摘A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These CCFs were utilized as free-standing lithium-ion battery(LIB)anodes.Optimizing car-bonization temperature reveals that the CCFs exhibit a one-dimensional solid linear structure with a uni-form distribution of graphite-like microcrystals.These fibers possess a dense structure and smooth surface,with averaging diameter from approximately 125.0 to 210.0 nm at carbonization temperatures ranging from 600 to 900℃.During electrospinning and carbonization,the aromatic rings enriched in bituminous coal crosslink with PAN chains,forming a robust three-dimensional(3D)framework.This 3D microstructure significantly enhances the flexibility and tensile strength of CCFs,while increasing the graphite-like sp^(2)microcrystalline carbon content,thus improving electrical conductivity.The CCFs carbonized at 700℃demonstrate an optimal balance of sp^(3)amorphous and sp^(2)graphite-like carbons.The average diameter of CCFs-700 is 177 nm and the specific surface area(SSA)is 7.2 m^(2)g^(-1).Additionally,the fibers contain oxygen-containing functional groups,as well as nitrogen-containing func-tional groups,including pyridinic nitrogen and pyrrolic nitrogen.Owing to its characteristics,the CCFs-700 showcases remarkable electrochemical performance,delivering a high reversible capacity of 631.4 mAh g^(-1).CCFs-700 also exhibit outstanding cycle stability,which retains approximately all of their first capacity(400.1 mAh g^(-1))after 120 cycles.This research offers an economical yet scalable approach for producing flexible and self-supporting anodes for LIBs that do not require current collectors,binders and conductive additives,thereby simplifying the electrode fabrication process.
基金supported by the National Key Research and Development Program of China(2019YFB1707505)the National Natural Science Foundation of China(Grant No.52005436)。
文摘The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.
基金National Natural Science Foundation of China,Grant/Award Numbers:52274261,52074109,52304284Natural Science Foundation of Henan Province,Grant/Award Number:222300420167+4 种基金Research Fund of Henan Key Laboratory of Coal Green Conversion,Grant/Award Number:CGCF202201Program for Science&Technology Innovation Talents in Universities of Henan Province,Grant/Award Number:21HASTIT008Key Scientific Research Project in Colleges and Universities of Henan Province,Grant/Award Numbers:22A430022,24A440003Scientific and Technological Project of Henan Province,Grant/Award Number:212102310564Natural Science Fund from Ningbo Municipal Bureau of Science and Technology,Grant/Award Number:2023J040。
文摘Two-dimensional porous carbon nanosheets(PCNSs)are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures.Herein,using naturally abundant and biocompatible sodium humate(SH)as the precursor,PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice-templating-induced puzzle coupled with a carbonization strategy.Such obtained SH-derived PCNSs(SH-PCNSs)possess a hierarchical porous structure dominated by mesopores having a specific surface area(~127.192 g^(−1)),pore volume(~0.134 cm3 g^(−1)),sheet-like morphology(~2.18nm in thickness),and nitrogen/oxygen-containing functional groups.Owing to these merits,the SH-PCNSs present impressive Li-ion storage characteristics,including high reversible capacity(1011mAh g^(−1) at 0.1 A g^(−1)),excellent rate capability(465mAh g^(−1) at 5 A g^(−1)),and superior cycle stability(76.8%capacitance retention after 1000 cycles at 5 A g^(−1)).It is noted that the SH-PCNSs prepared from the kilogram-scale production procedure possess comparable electrochemical properties.Furthermore,coupling with a LiNi1/3Co1/3Mn1/3O2 cathode,the full cells deliver a high capacity of 167mAh g^(−1) at 0.2A g^(−1) and exhibit an outstanding energy density of 128.8Whkg^(−1),highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金supported by the National Key R&D Program of China (2018YFD0901106)the Wenzhou Major Science and Technology Project (ZN2021002)the Ningbo“3315 series program”for high-level talents (2020B-34-G)。
文摘In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.
基金supported by the Key Research and Development Program of Zhejiang(Grant No.2023C03183)the Natural Science Foundation of Zhejiang Province(Grant No.LY23E080005)Science and Technology Project of Zhejiang Provincial Department of Transport(Grant No.202225).
文摘With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital worlds and aid the digital transformation of the civil engineering industry.In this paper,605 documents obtained from the search werefirst analysed using CiteSpace for literature visualisation,and an author co-occurrence network,a keyword co-occurrence network,and a keyword clustering set were obtained.Next,through a literature review of 86 papers,this paper summarises the current status of DT application in civil engineering based on a review of the origins,concepts,and implementation techniques of DTs,and it introduces the application of DTs in the full project lifecycle.This study shows that DTs have great potential to address many of the challenges faced by civil engineering.In this regard,the paper also presents some thoughts on the future directions of DT research.
基金supported by National SKA Program of China No.2020SKA0120300National Natural Science Foundation of China(Grant No.11875052,No.11873040,No.11705163,and No.11525524)+3 种基金the science research grants from the China Manned Space Project(No.CMS-CSST-2021-B11)the Youth Innovation Fund of Xiamen(No.3502Z20206061)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-sp36)the National Key R&D Program of China No.2018YFA0404402
文摘In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant density functionals are adopted,i.e.,those with nonlinear self couplings(NL3,PK1,TM1,GM1,MTVTC)and density-dependent couplings(DD-LZ1,DDME-X,PKDD,DDME2,DD2,TW99).It is found that the EOSs generally coincide with each other at nb■10^(-4)fm^(-3)and 0.1 fm^(-3)■n_(b)■0.3 fm^(-3),while in other density regions they are sensitive to the effective interactions between nucleons.By adopting functionals with a larger slope of symmetry energy L,the curvature parameter K_(sym)and neutron drip density generally increases,while the droplet size,proton number of nucleus,core-crust transition density,and onset density of non-spherical nuclei,decrease.All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit,while those of DD2,DD-LZ1,DD-ME2,and DDME-X predict optimum neutron star radii according to the observational constraints.Nevertheless,the corresponding skewness coefficients J are much larger than expected,while only the functionals MTVTC and TW99 meet the start-of-art constraints on J.More accurate measurements on the radius of PSR J0740+6620 and the maximum mass of neutron stars are thus essential to identify the functional that satisfies all constraints from nuclear physics and astrophysical observations.Approximate linear correlations between neutron stars’radii at M=1.4M⊙and 2M⊙,the slope L and curvature parameter K_(sym)of symmetry energy are observed as well,which are mainly attributed to the curvature-slope correlations in the functionals adopted here.The results presented here are applicable for investigations of the structures and evolutions of compact stars in a unified manner.