BACKGROUND Stress hyperglycemia(SH)is a common phenomenon that is present in about 50%of patients with acute ischemic stroke(AIS).It is thought to be a main risk factor for poor functional outcome among patients with ...BACKGROUND Stress hyperglycemia(SH)is a common phenomenon that is present in about 50%of patients with acute ischemic stroke(AIS).It is thought to be a main risk factor for poor functional outcome among patients with AIS undergoing intravenous thrombolysis(IVT).AIM To investigate the predictive value of glycemic indicators for early neurological outcomes(ENOs)in patients with AIS treated with IVT.METHODS We retrospectively reviewed a prospectively collected database of patients with AIS who underwent IVT at the Department of Neurology,Second Affiliated Hospital of Xuzhou Medical University,between January 2017 and June 2022.ENO included early neurological improvement(ENI)and early neurological deterioration(END),defined as a decrease or increase in the National Institutes of Health Stroke Scale(NIHSS)score between baseline and 24 hours after IVT.We analyzed the associations between glycemic indicators[including admission hyperglycemia(AH),fasting blood glucose(FBG),and SH ratio(SHR)]and ENO in all patients and in subgroups stratified by diabetes mellitus(DM).RESULTS A total of 819 patients with AIS treated with IVT were included.Among these,AH was observed in 329 patients(40.2%).Compared with patients without AH,those with AH were more likely to have a higher prevalence of DM(P<0.001)and hypertension(P=0.031)and presented with higher admission NIHSS scores(P<0.001).During the first 24 hours after IVT,END occurred in 208 patients(25.4%)and ENI occurred in 156 patients(19.0%).Multivariate mixed logistic regression analyses indicated that END was independently associated with AH[odds ratio(OR):1.744,95%confidence interval(CI):1.236-2.463;P=0.002].Subjects were classified into four groups representing quartiles.Compared with Q1,patients in the higher quartiles of SHR(Q2:OR:2.306,95%CI:1.342-3.960;P=0.002)(Q3:OR:2.284,95%CI:1.346-3.876;P=0.002)(Q4:OR:3.486,95%CI:2.088-5.820;P=0.001)and FBG(Q3:OR:1.746,95%CI:1.045-2.917;P=0.033)(Q4:OR:2.436,95%CI:1.476-4.022;P=0.001)had a significantly higher risk of END in the overall population.However,none of the glycemic indicators were found to be associated with ENI in patients with or without DM.CONCLUSION Our study demonstrated that glycemic indicators in patients with stroke treated with IVT were associated with the presence of END rather than ENI during the first 24 hours after admission.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at...Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.展开更多
Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein ...Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.展开更多
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ...Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.展开更多
Urine-derived stem cells(USCs)are derived from urine and harbor the potential of proliferation and multidirectional differentiation.Moreover,USCs could be reprogrammed into pluripotent stem cells[namely urine-derived ...Urine-derived stem cells(USCs)are derived from urine and harbor the potential of proliferation and multidirectional differentiation.Moreover,USCs could be reprogrammed into pluripotent stem cells[namely urine-derived induced pluripotent stem cells(UiPSCs)]through transcription factors,such as octamer binding transcription factor 4,sex determining region Y-box 2,kruppel-like factor 4,myelocytomatosis oncogene,and Nanog homeobox and protein lin-28,in which the first four are known as Yamanaka factors.Mounting evidence supports that USCs and UiPSCs possess high potential of neurogenic,myogenic,and osteogenic differentiation,indicating that they may play a crucial role in the treatment of neurological and musculoskeletal diseases.Therefore,we summarized the origin and physiological characteristics of USCs and UiPSCs and their therapeutic application in neurological and musculoskeletal disorders in this review,which not only contributes to deepen our understanding of hallmarks of USCs and UiPSCs but also provides the theoretical basis for the treatment of neurological and musculoskeletal disorders with USCs and UiPSCs.展开更多
The authors report a case of deficient sensory neuropathy secondary to vitamin B12 deficiency, diagnosed in the neurology department of the Sino-Central African Friendship University Hospital in Bangui. The diagnosis ...The authors report a case of deficient sensory neuropathy secondary to vitamin B12 deficiency, diagnosed in the neurology department of the Sino-Central African Friendship University Hospital in Bangui. The diagnosis was made possible by electroneuromyography which showed subclinical neurological damage associated with hematological damage (anemia). Through this observation, we recall the diagnostic criteria of the disease in a context of difficult medical practice. .展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial a...BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.展开更多
Degeneration and death of nerve cells are inevitable with the occurrence and progression of nervous system disorders.Researchers transplanted neural stem cells into relevant areas,trying to solve the difficulty of neu...Degeneration and death of nerve cells are inevitable with the occurrence and progression of nervous system disorders.Researchers transplanted neural stem cells into relevant areas,trying to solve the difficulty of neural cell loss by differentiating neural stem cells into various nerve cells.In recent years,however,studies have shown that transplanted neural stem cells help neural tissues regenerate and return to normal through paracrine action rather than just replacing cells.Exosomes are essential paracrine mediators,which can participate in cell communication through substance transmission.In this regard,this review mainly discusses the current research progress of neural stem cell-derived exosomes.This paper mainly introduces the self-regulation of neural stem cells(NSCs)-derived exosomes on neural stem cells to clarify the role of NSCs-derived exosomes in the nervous system;the therapeutic effect of NSCs-derived exosomes on various neurological diseases;introduces different studies of NSCs-derived exosomes,showing more in-depth research results of NSCs-derived exosomes.It presents some ideas to provide a reference for subsequent research on neural stem cell-derived exosomes.展开更多
Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-...Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-aged/older stroke patients hospitalized in the Department of Neurological Rehabilitation, China Rehabilitation Research Center, Capital Medical University, China from February 2014 to May 2015. Results demonstrated that hemorrhagic stroke (59.6%) was the primary stroke type found in the young group, while ischemic stroke (60.0%) was the main type detected in the middle-aged/older group. Compared with older stroke patients, education level and incidence of hyperhomocysteinemia were higher in younger stroke patients, whereas, incidences of hypertension, diabetes, and heart disease were lower. The average length of hospital stay was longer in the young group than in the middle-aged/older group. The main risk factors observed in the young stroke patients were hypertension, drinking, smoking, hyperlipidemia, hyperhomocysteinemia, diabetes, previous history of stroke, and heart disease. The most accepted rehabilitation program consisted of physiotherapy, occupational therapy, speech therapy, acupuncture and moxibustion. Average rehabilitation training time was 2.5 hours/day. Barthel Index and modified Rankin Scale scores were increased at discharge. Six months after discharge, the degree of occupational and economic satisfaction declined, and there were no changes in family life satisfaction. The degrees of other life satisfaction (such as friendship) improved. The degree of disability and functional status improved significantly in young stroke patients after professional rehabilitation, but the number of patients who returned to society within 6 months after stroke was still small.展开更多
Hepatitis C virus(HCV)infection is considered a systemic disease because of involvement of other organs and tissues concomitantly with liver disease.Among the extrahepatic manifestations,neuropsychiatric disorders hav...Hepatitis C virus(HCV)infection is considered a systemic disease because of involvement of other organs and tissues concomitantly with liver disease.Among the extrahepatic manifestations,neuropsychiatric disorders have been reported in up to 50%of chronic HCV infected patients.Both the central and peripheral nervous system may be involved with a wide variety of clinical manifestations.Main HCV-associated neurological conditions include cerebrovascular events,encephalopathy,myelitis,encephalomyelitis,and cognitive impairment,whereas"brain fog",depression,anxiety,and fatigue are at the top of the list of psychiatric disorders.Moreover,HCV infection is known to cause both motor and sensory peripheral neuropathy in the context of mixed cryoglobulinemia,and has also been recently recognized as an independent risk factor for stroke.These extrahepatic manifestations are independent of severity of the underlying chronic liver disease and hepatic encephalopathy.The brain is a suitable site for HCV replication,where the virus may directly exert neurotoxicity;other mechanisms proposed to explain the pathogenesis of neuropsychiatric disorders in chronic HCV infection include derangement of metabolic pathways of infected cells,alterations in neurotransmitter circuits,autoimmune disorders,and cerebral or systemic inflammation.A pathogenic role for HCV is also suggested by improvement of neurological and psychiatric symptoms in patients achieving a sustained virologic response following interferon treatment;however,further ad hoc trials are needed to fully assess the impact of HCV infection and specific antiviral treatments on associated neuropsychiatric disorders.展开更多
In Alzheimer’s disease and ischemic stroke,intranasal insulin can act as a neuroprotective agent.However,whether intranasal insulin has a neuroprotective effect in intracerebral hemorrhage and its potential mechanism...In Alzheimer’s disease and ischemic stroke,intranasal insulin can act as a neuroprotective agent.However,whether intranasal insulin has a neuroprotective effect in intracerebral hemorrhage and its potential mechanisms remain poorly understood.In this study,a mouse model of autologous blood-induced intracerebral hemorrhage was treated with 0.5,1,or 2 IU insulin via intranasal delivery,twice per day,until 24 or 72 hours after surgery.Compared with saline treatment,1 IU intranasal insulin treatment significantly reduced hematoma volume and brain edema after cerebral hemorrhage,decreased blood-brain barrier permeability and neuronal degeneration damage,reduced neurobehavioral deficits,and improved the survival rate of mice.Expression levels of p-AKT and p-GSK3βwere significantly increased in the perihematoma tissues after intranasal insulin therapy.Our findings suggest that intranasal insulin therapy can protect the neurological function of mice after intracerebral hemorrhage through the AKT/GSK3βsignaling pathway.The study was approved by the Ethics Committee of the North Sichuan Medical College of China(approval No.NSMC(A)2019(01))on January 7,2019.展开更多
Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the different...Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.展开更多
Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor co...Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex.As the only direct descending motor pathway,the corticospinal tract(CST)is the primary pathway to innervate spinal motor neurons,and thus,forms the neuroanatomical basis to control the peripheral muscles for voluntary movements.Here,we review evidence from both experimental animals and stroke patients,regarding CST axonal damage,functional contribution of CST axonal integrity and remodeling to neurological recovery,and therapeutic approaches aimed to enhance CST axonal remodeling after stroke.The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation,which will significantly impact the current clinical needs of subacute and chronic stroke treatment.展开更多
Mood disorder and depressive syndromes represent a common comorbid condition in neurological disorders witha prevalence rate that ranges between 20% and 50% of patients with stroke, epilepsy, multiple sclerosis, and P...Mood disorder and depressive syndromes represent a common comorbid condition in neurological disorders witha prevalence rate that ranges between 20% and 50% of patients with stroke, epilepsy, multiple sclerosis, and Parkinson's disease. Notwithstanding, these conditions are often under-diagnosed and under-treated in the clinical practice and negatively affect the functional recovery, the adherence to treatment, the quality of life, and even the mortality risk. In addition, a bidirectional association between depression and neurological disorders may be possible being that depressive syndromes may be considered as a risk factor for certain neurological diseases. Despite the large amount of evidence regarding the effects of music therapy(MT) and other musical interventions on different aspects of neurological disorders, no updated article reviewing outcomes such as mood, emotions, depression, activity of daily living and so on is actually available; for this reason, little is known about the effectiveness of music and MT on these important outcomes in neurological patients. The aim of this article is to provide a narrative review of the current literature on musical interventions and their effects on mood and depression in patients with neurological disorders. Searching on Pub Med and Psyc Info databases, 25 studies corresponding to the inclusion criteria have been selected; 11 of them assess the effects of music or MT in Dementia, 9 explore the efficacy on patients with Stroke, and 5 regard other neurological diseases like Multiple Sclerosis, Amyotrophic Lateral Sclerosis/motor neuron disease, Chronic quadriplegia, Parkinson's Disease, and Acquired Brain dysfunctions. Selected studies are based on relational and rehabilitative music therapy approaches or concern music listening interventions. Most of the studies support the efficacy of MT and other musical interventions on mood, depressive syndromes, and quality of life on neurological patients.展开更多
OBJECTIVE: To evaluate the efficacy and safety of gandouling plus sodium dimercaptosulphonate(DMPS) on neurological Wilson's disease(WD) in patients.METHODS: We retrospectively evaluated the clinical records of 12...OBJECTIVE: To evaluate the efficacy and safety of gandouling plus sodium dimercaptosulphonate(DMPS) on neurological Wilson's disease(WD) in patients.METHODS: We retrospectively evaluated the clinical records of 125 WD patients with neurological syndromes who were treated with gandouling plus sodium DMPS or DMPS used alone. All patients had a history of neurological deterioration during their diseases courses. The clinical efficacies, adverse reactions, and results of the various hematological and biochemical investigations were recorded for statistical analysis.RESULTS: 92.30%(60 patients) of the WD patients treated with the combined therapy experienced an improved or stable neurological condition paral-leled by a significantly improved GAS score. Meanwhile, the WBC and PLT counts stabilized, liver function and renal function were improved or remained stable. The combined therapy also obviously promoted the 24-h urinary copper excretion. In particular, only 30.76% of the WD patients experienced mild adverse reactions, including neurological deterioration in 5 patients(7.69%), hepatic worsening in 1 subject(1.89%), which was less frequently than those in the control group treated with DMPS only.CONCLUSION: Our findings indicate that the safety and efficacy of gandou-ling plus DMPS is superior to those of DMPS used alone in the WD patients with neurological symptoms.展开更多
Paraneoplastic neurological syndrome refers to certain malignant tumors that have affected the distant nervous system and caused corresponding dysfunction in the absence of tumor metastasis.Patients with this syndrome...Paraneoplastic neurological syndrome refers to certain malignant tumors that have affected the distant nervous system and caused corresponding dysfunction in the absence of tumor metastasis.Patients with this syndrome produce multiple antibodies,each targeting a different antigen and causing different symptoms and signs.The CV2/collapsin response mediator protein 5(CRMP5)antibody is a major antibody of this type.It damages the nervous system,which often manifests as limbic encephalitis,chorea,ocular manifestation,cerebellar ataxia,myelopathy,and peripheral neuropathy.Detecting CV2/CRMP5 antibody is crucial for the clinical diagnosis of paraneoplastic neurological syndrome,and anti-tumor and immunological therapies can help to alleviate symptoms and improve prognosis.However,because of the low incidence of this disease,few repo rts and no reviews have been published about it so far.This article intends to review the research on CV2/CRMP5antibody-associated paraneoplastic neurological syndrome and summarize its clinical features to help clinicians comprehensively understand the disease.Additionally,this review discusses the curre nt challenges that this disease poses,and the application prospects of new detection and diagnostic techniques in the field of paraneoplastic neurological syndrom e,including CV2/CRMP5-associated paraneoplastic neurological syndrome,in recent years.展开更多
The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.mu...The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.muciniphila,a mucin-degrading bacterium,is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy.As the role of A.muciniphila in PD has become increasingly apparent,we discuss the potential link between A.muciniphila and various neurological diseases(including PD)in the current review.展开更多
Stroke is a leading cause of death and disability in adults worldwide. For decades, the primary approach and goal of therapy for stroke has focused on neuroprotection, namely treating the injured tissue, with interven...Stroke is a leading cause of death and disability in adults worldwide. For decades, the primary approach and goal of therapy for stroke has focused on neuroprotection, namely treating the injured tissue, with interventions designed to reduce the volume of cerebral infarction. Enormous effort in the laboratory has been devoted to the development of neuroprotective agents in an attempt to salvage ischemic neurons in the brain from irreversible injury; however, all these efforts have failed to demonstrate efficacy in clinical trials of stroke. In order to treat stroke, we have to re-con- ceptualize and redefine our therapeutic targets. Acute neu- roprotective treatments for stroke fight a temporal battle of salvaging cerebral tissue before the onset of death, as well as a physiological impediment of delivery of therapy to tissue which has inadequate blood flow.展开更多
基金Supported by the Foundation of Jiangsu Provincial Commission of Health and Family Planning,No.QNRC2016353the Commission of Health and Family Planning Xuzhou,No.KC22206.
文摘BACKGROUND Stress hyperglycemia(SH)is a common phenomenon that is present in about 50%of patients with acute ischemic stroke(AIS).It is thought to be a main risk factor for poor functional outcome among patients with AIS undergoing intravenous thrombolysis(IVT).AIM To investigate the predictive value of glycemic indicators for early neurological outcomes(ENOs)in patients with AIS treated with IVT.METHODS We retrospectively reviewed a prospectively collected database of patients with AIS who underwent IVT at the Department of Neurology,Second Affiliated Hospital of Xuzhou Medical University,between January 2017 and June 2022.ENO included early neurological improvement(ENI)and early neurological deterioration(END),defined as a decrease or increase in the National Institutes of Health Stroke Scale(NIHSS)score between baseline and 24 hours after IVT.We analyzed the associations between glycemic indicators[including admission hyperglycemia(AH),fasting blood glucose(FBG),and SH ratio(SHR)]and ENO in all patients and in subgroups stratified by diabetes mellitus(DM).RESULTS A total of 819 patients with AIS treated with IVT were included.Among these,AH was observed in 329 patients(40.2%).Compared with patients without AH,those with AH were more likely to have a higher prevalence of DM(P<0.001)and hypertension(P=0.031)and presented with higher admission NIHSS scores(P<0.001).During the first 24 hours after IVT,END occurred in 208 patients(25.4%)and ENI occurred in 156 patients(19.0%).Multivariate mixed logistic regression analyses indicated that END was independently associated with AH[odds ratio(OR):1.744,95%confidence interval(CI):1.236-2.463;P=0.002].Subjects were classified into four groups representing quartiles.Compared with Q1,patients in the higher quartiles of SHR(Q2:OR:2.306,95%CI:1.342-3.960;P=0.002)(Q3:OR:2.284,95%CI:1.346-3.876;P=0.002)(Q4:OR:3.486,95%CI:2.088-5.820;P=0.001)and FBG(Q3:OR:1.746,95%CI:1.045-2.917;P=0.033)(Q4:OR:2.436,95%CI:1.476-4.022;P=0.001)had a significantly higher risk of END in the overall population.However,none of the glycemic indicators were found to be associated with ENI in patients with or without DM.CONCLUSION Our study demonstrated that glycemic indicators in patients with stroke treated with IVT were associated with the presence of END rather than ENI during the first 24 hours after admission.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金supported by Postdoc Fellowship from the Foundation for Angelman Syndrome Therapeutics(FT2022-005 to JM,PD2023-001 to XY,and FT2024-001 to YAH)STTR R41 MH118747(to JM)。
文摘Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
基金supported by Applied Basic Research Joint Fund Project of Yunnan Province,No.202301AY070001-200Middle-aged Academic and Technical Training Project for High-Level Talents,No.202105AC160065+1 种基金Yunnan Clinical Medical Center for Neurological and Cardiovascular Diseases,No.YWLCYXZX2023300077Key Clinical Specialty of Neurology in Yunnan Province,No.300064(all to CL)。
文摘Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.
文摘Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.
基金Supported by the Key Research and Development Program of Sichuan Science and Technology Agency,No.2020YFS0043Natural Science Foundation of Sichuan Province of China,No.2023NSFSC1567+1 种基金Sichuan University Innovation Research Project,No.2023SCUH0033Innovation Team at the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University,No.2022-CXTD-05.
文摘Urine-derived stem cells(USCs)are derived from urine and harbor the potential of proliferation and multidirectional differentiation.Moreover,USCs could be reprogrammed into pluripotent stem cells[namely urine-derived induced pluripotent stem cells(UiPSCs)]through transcription factors,such as octamer binding transcription factor 4,sex determining region Y-box 2,kruppel-like factor 4,myelocytomatosis oncogene,and Nanog homeobox and protein lin-28,in which the first four are known as Yamanaka factors.Mounting evidence supports that USCs and UiPSCs possess high potential of neurogenic,myogenic,and osteogenic differentiation,indicating that they may play a crucial role in the treatment of neurological and musculoskeletal diseases.Therefore,we summarized the origin and physiological characteristics of USCs and UiPSCs and their therapeutic application in neurological and musculoskeletal disorders in this review,which not only contributes to deepen our understanding of hallmarks of USCs and UiPSCs but also provides the theoretical basis for the treatment of neurological and musculoskeletal disorders with USCs and UiPSCs.
文摘The authors report a case of deficient sensory neuropathy secondary to vitamin B12 deficiency, diagnosed in the neurology department of the Sino-Central African Friendship University Hospital in Bangui. The diagnosis was made possible by electroneuromyography which showed subclinical neurological damage associated with hematological damage (anemia). Through this observation, we recall the diagnostic criteria of the disease in a context of difficult medical practice. .
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
文摘BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.
文摘Degeneration and death of nerve cells are inevitable with the occurrence and progression of nervous system disorders.Researchers transplanted neural stem cells into relevant areas,trying to solve the difficulty of neural cell loss by differentiating neural stem cells into various nerve cells.In recent years,however,studies have shown that transplanted neural stem cells help neural tissues regenerate and return to normal through paracrine action rather than just replacing cells.Exosomes are essential paracrine mediators,which can participate in cell communication through substance transmission.In this regard,this review mainly discusses the current research progress of neural stem cell-derived exosomes.This paper mainly introduces the self-regulation of neural stem cells(NSCs)-derived exosomes on neural stem cells to clarify the role of NSCs-derived exosomes in the nervous system;the therapeutic effect of NSCs-derived exosomes on various neurological diseases;introduces different studies of NSCs-derived exosomes,showing more in-depth research results of NSCs-derived exosomes.It presents some ideas to provide a reference for subsequent research on neural stem cell-derived exosomes.
基金supported by the Special Fund of Basic Scientific Research Service Fee of Central Public Welfare Scientif ic Research Institute of China,No.2014CZ-13
文摘Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-aged/older stroke patients hospitalized in the Department of Neurological Rehabilitation, China Rehabilitation Research Center, Capital Medical University, China from February 2014 to May 2015. Results demonstrated that hemorrhagic stroke (59.6%) was the primary stroke type found in the young group, while ischemic stroke (60.0%) was the main type detected in the middle-aged/older group. Compared with older stroke patients, education level and incidence of hyperhomocysteinemia were higher in younger stroke patients, whereas, incidences of hypertension, diabetes, and heart disease were lower. The average length of hospital stay was longer in the young group than in the middle-aged/older group. The main risk factors observed in the young stroke patients were hypertension, drinking, smoking, hyperlipidemia, hyperhomocysteinemia, diabetes, previous history of stroke, and heart disease. The most accepted rehabilitation program consisted of physiotherapy, occupational therapy, speech therapy, acupuncture and moxibustion. Average rehabilitation training time was 2.5 hours/day. Barthel Index and modified Rankin Scale scores were increased at discharge. Six months after discharge, the degree of occupational and economic satisfaction declined, and there were no changes in family life satisfaction. The degrees of other life satisfaction (such as friendship) improved. The degree of disability and functional status improved significantly in young stroke patients after professional rehabilitation, but the number of patients who returned to society within 6 months after stroke was still small.
基金Supported by Research grant from Regione Campania,Italy
文摘Hepatitis C virus(HCV)infection is considered a systemic disease because of involvement of other organs and tissues concomitantly with liver disease.Among the extrahepatic manifestations,neuropsychiatric disorders have been reported in up to 50%of chronic HCV infected patients.Both the central and peripheral nervous system may be involved with a wide variety of clinical manifestations.Main HCV-associated neurological conditions include cerebrovascular events,encephalopathy,myelitis,encephalomyelitis,and cognitive impairment,whereas"brain fog",depression,anxiety,and fatigue are at the top of the list of psychiatric disorders.Moreover,HCV infection is known to cause both motor and sensory peripheral neuropathy in the context of mixed cryoglobulinemia,and has also been recently recognized as an independent risk factor for stroke.These extrahepatic manifestations are independent of severity of the underlying chronic liver disease and hepatic encephalopathy.The brain is a suitable site for HCV replication,where the virus may directly exert neurotoxicity;other mechanisms proposed to explain the pathogenesis of neuropsychiatric disorders in chronic HCV infection include derangement of metabolic pathways of infected cells,alterations in neurotransmitter circuits,autoimmune disorders,and cerebral or systemic inflammation.A pathogenic role for HCV is also suggested by improvement of neurological and psychiatric symptoms in patients achieving a sustained virologic response following interferon treatment;however,further ad hoc trials are needed to fully assess the impact of HCV infection and specific antiviral treatments on associated neuropsychiatric disorders.
基金supported by the National Natural Science Foundation of China,No.81971220a grant from the Science and Technology Department of Sichuan Province of China,No.2018JY0236(both to GHJ)。
文摘In Alzheimer’s disease and ischemic stroke,intranasal insulin can act as a neuroprotective agent.However,whether intranasal insulin has a neuroprotective effect in intracerebral hemorrhage and its potential mechanisms remain poorly understood.In this study,a mouse model of autologous blood-induced intracerebral hemorrhage was treated with 0.5,1,or 2 IU insulin via intranasal delivery,twice per day,until 24 or 72 hours after surgery.Compared with saline treatment,1 IU intranasal insulin treatment significantly reduced hematoma volume and brain edema after cerebral hemorrhage,decreased blood-brain barrier permeability and neuronal degeneration damage,reduced neurobehavioral deficits,and improved the survival rate of mice.Expression levels of p-AKT and p-GSK3βwere significantly increased in the perihematoma tissues after intranasal insulin therapy.Our findings suggest that intranasal insulin therapy can protect the neurological function of mice after intracerebral hemorrhage through the AKT/GSK3βsignaling pathway.The study was approved by the Ethics Committee of the North Sichuan Medical College of China(approval No.NSMC(A)2019(01))on January 7,2019.
基金funded by the National Natural Science Foundation of China,No.81501185(to CR)the Key Research&Development Project of Shandong Province of China,No.2017GSF218043(to CR)the Science and Technology Planning Project of Yantai of China,No.2016WS017(to LNG),2017WS105(to HL)
文摘Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.
文摘Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex.As the only direct descending motor pathway,the corticospinal tract(CST)is the primary pathway to innervate spinal motor neurons,and thus,forms the neuroanatomical basis to control the peripheral muscles for voluntary movements.Here,we review evidence from both experimental animals and stroke patients,regarding CST axonal damage,functional contribution of CST axonal integrity and remodeling to neurological recovery,and therapeutic approaches aimed to enhance CST axonal remodeling after stroke.The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation,which will significantly impact the current clinical needs of subacute and chronic stroke treatment.
文摘Mood disorder and depressive syndromes represent a common comorbid condition in neurological disorders witha prevalence rate that ranges between 20% and 50% of patients with stroke, epilepsy, multiple sclerosis, and Parkinson's disease. Notwithstanding, these conditions are often under-diagnosed and under-treated in the clinical practice and negatively affect the functional recovery, the adherence to treatment, the quality of life, and even the mortality risk. In addition, a bidirectional association between depression and neurological disorders may be possible being that depressive syndromes may be considered as a risk factor for certain neurological diseases. Despite the large amount of evidence regarding the effects of music therapy(MT) and other musical interventions on different aspects of neurological disorders, no updated article reviewing outcomes such as mood, emotions, depression, activity of daily living and so on is actually available; for this reason, little is known about the effectiveness of music and MT on these important outcomes in neurological patients. The aim of this article is to provide a narrative review of the current literature on musical interventions and their effects on mood and depression in patients with neurological disorders. Searching on Pub Med and Psyc Info databases, 25 studies corresponding to the inclusion criteria have been selected; 11 of them assess the effects of music or MT in Dementia, 9 explore the efficacy on patients with Stroke, and 5 regard other neurological diseases like Multiple Sclerosis, Amyotrophic Lateral Sclerosis/motor neuron disease, Chronic quadriplegia, Parkinson's Disease, and Acquired Brain dysfunctions. Selected studies are based on relational and rehabilitative music therapy approaches or concern music listening interventions. Most of the studies support the efficacy of MT and other musical interventions on mood, depressive syndromes, and quality of life on neurological patients.
基金Supported by National Natural Science Foundation of China(No.81673811,81473534,81774299)
文摘OBJECTIVE: To evaluate the efficacy and safety of gandouling plus sodium dimercaptosulphonate(DMPS) on neurological Wilson's disease(WD) in patients.METHODS: We retrospectively evaluated the clinical records of 125 WD patients with neurological syndromes who were treated with gandouling plus sodium DMPS or DMPS used alone. All patients had a history of neurological deterioration during their diseases courses. The clinical efficacies, adverse reactions, and results of the various hematological and biochemical investigations were recorded for statistical analysis.RESULTS: 92.30%(60 patients) of the WD patients treated with the combined therapy experienced an improved or stable neurological condition paral-leled by a significantly improved GAS score. Meanwhile, the WBC and PLT counts stabilized, liver function and renal function were improved or remained stable. The combined therapy also obviously promoted the 24-h urinary copper excretion. In particular, only 30.76% of the WD patients experienced mild adverse reactions, including neurological deterioration in 5 patients(7.69%), hepatic worsening in 1 subject(1.89%), which was less frequently than those in the control group treated with DMPS only.CONCLUSION: Our findings indicate that the safety and efficacy of gandou-ling plus DMPS is superior to those of DMPS used alone in the WD patients with neurological symptoms.
基金National Natural Science Foundation of China,No.U1604181Henan Province Key R&D and Promotion Special Project (Science and Technology Tackle),No.212102310834+1 种基金Henan Medical Education Research Project,No.Wjlx2020531the Joint project of Medical Science and Technology Research Program of Henan Province,No.LHGJ20190078 (all to JW)。
文摘Paraneoplastic neurological syndrome refers to certain malignant tumors that have affected the distant nervous system and caused corresponding dysfunction in the absence of tumor metastasis.Patients with this syndrome produce multiple antibodies,each targeting a different antigen and causing different symptoms and signs.The CV2/collapsin response mediator protein 5(CRMP5)antibody is a major antibody of this type.It damages the nervous system,which often manifests as limbic encephalitis,chorea,ocular manifestation,cerebellar ataxia,myelopathy,and peripheral neuropathy.Detecting CV2/CRMP5 antibody is crucial for the clinical diagnosis of paraneoplastic neurological syndrome,and anti-tumor and immunological therapies can help to alleviate symptoms and improve prognosis.However,because of the low incidence of this disease,few repo rts and no reviews have been published about it so far.This article intends to review the research on CV2/CRMP5antibody-associated paraneoplastic neurological syndrome and summarize its clinical features to help clinicians comprehensively understand the disease.Additionally,this review discusses the curre nt challenges that this disease poses,and the application prospects of new detection and diagnostic techniques in the field of paraneoplastic neurological syndrom e,including CV2/CRMP5-associated paraneoplastic neurological syndrome,in recent years.
基金supported by grants from Double thousand talents program of Jiangxi province(No.jxsq2019101021)the National Natural Science Foundation of China(No.82060222)+2 种基金the Natural Science Foundation of Jiangxi Province(No.20181BAB205030)the Key R&D Plan of Jiangxi Science and Technology Agency-General Project(No.20192BBG70031)Administration of Traditional Chinese Medicine of Jiangxi Province(No.2021B101).
文摘The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.muciniphila,a mucin-degrading bacterium,is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy.As the role of A.muciniphila in PD has become increasingly apparent,we discuss the potential link between A.muciniphila and various neurological diseases(including PD)in the current review.
基金supported by National Institute of Neurological Disorders and Stroke(NINDS)of the National Institutes of Health under award number R01NS066041(ZL),R01NS081189(HX) and R01AG037506(MC)
文摘Stroke is a leading cause of death and disability in adults worldwide. For decades, the primary approach and goal of therapy for stroke has focused on neuroprotection, namely treating the injured tissue, with interventions designed to reduce the volume of cerebral infarction. Enormous effort in the laboratory has been devoted to the development of neuroprotective agents in an attempt to salvage ischemic neurons in the brain from irreversible injury; however, all these efforts have failed to demonstrate efficacy in clinical trials of stroke. In order to treat stroke, we have to re-con- ceptualize and redefine our therapeutic targets. Acute neu- roprotective treatments for stroke fight a temporal battle of salvaging cerebral tissue before the onset of death, as well as a physiological impediment of delivery of therapy to tissue which has inadequate blood flow.