期刊文献+
共找到7,643篇文章
< 1 2 250 >
每页显示 20 50 100
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
1
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Soft Resource Slicing for Industrial Mixed Traffic in 5G Networks
2
作者 Jingfang Ding Meng Zheng Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期463-465,共3页
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler... Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme. 展开更多
关键词 G networks industrial mixed traffic dynamic switching soft slicing strategy periodic delay sensitive traffic soft slicing dynamic switching g networks dynamic switching strategy
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
3
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Effects of information and policy regulation on green behavior propagation in multilayer networks: Modeling, analysis,and optimal allocation
4
作者 Xian-Li Sun Ling-Hua Zhang 《Chinese Physics B》 2025年第6期635-646,共12页
As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and am... As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant. 展开更多
关键词 green behavior propagation multilayer networks information dissemination optimal allocation
原文传递
C-privacy:A social relationship-driven image customization sharing method in cyber-physical networks
5
作者 Dapeng Wu Jian Liu +3 位作者 Yangliang Wan Zhigang Yang Ruyan Wang Xinqi Lin 《Digital Communications and Networks》 2025年第2期563-573,共11页
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV... Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses. 展开更多
关键词 Cyber-physical networks Customized privacy Face-swapping Heterogeneous information network Deep fakes
在线阅读 下载PDF
Non-Deterministic Symmetric Encryption Communication System Based on Generative Adversarial Networks
6
作者 Wu Xuguang Han Yiliang +2 位作者 Zhang Minqing Zhu Shuaishuai Li Yu 《China Communications》 2025年第5期273-284,共12页
Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will ... Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will lead to the same ciphertext.This means that the key in the deterministic encryption algorithm can only be used once,thus the encryption is not practical.To solve this problem,a nondeterministic symmetric encryption end-to-end communication system based on generative adversarial networks is proposed.We design a nonce-based adversarial neural network model,where a“nonce”standing for“number used only once”is passed to communication participants,and does not need to be secret.Moreover,we optimize the network structure through adding Batch Normalization(BN)to the CNNs(Convolutional Neural Networks),selecting the appropriate activation functions,and setting appropriate CNNs parameters.Results of experiments and analysis show that our system can achieve non-deterministic symmetric encryption,where Alice encrypting the same plaintext with the key twice will generate different ciphertexts,and Bob can decrypt all these different ciphertexts of the same plaintext to the correct plaintext.And our proposed system has fast convergence and the correct rate of decryption when the plaintext length is 256 or even longer. 展开更多
关键词 end-to-end communication systems generative adversarial networks symmetric encryption
在线阅读 下载PDF
MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks
7
作者 Ru Hao Chi Xu Jing Liu 《Computers, Materials & Continua》 2025年第2期3203-3222,共20页
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource... Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption. 展开更多
关键词 Industrial wireless networks(IWNs) multi-access edge computing(MEC) non-orthogonal multiple access(NOMA) task offloading resource allocation
在线阅读 下载PDF
Key Agreement and Management Scheme Based on Blockchain for 5G-Enabled Vehicular Networks
8
作者 Wang Zhihua Wang Shuaibo +4 位作者 Wang Haofan Li Jiaze Yao Yizhe Wang Yongjian Yang Xiaolong 《China Communications》 2025年第3期270-287,共18页
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu... 5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation. 展开更多
关键词 blockchain certificateless public key cryptography 5G vehicular networks key agreement key management
在线阅读 下载PDF
A Dynamic Self Organizing TDMA MAC for Long-Range Ad Hoc Networks
9
作者 Ding Lianghui Sheng Wenfeng +2 位作者 Tian Feng Sun Baichang Yang Feng 《China Communications》 2025年第9期212-225,共14页
Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most impor... Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most important parts impacting the whole network performance.In this paper,we propose a dis-tributed TDMA-based MAC protocol called Dynamic Self Organizing TDMA(DSO-TDMA)for wide area ad hoc networks.DSO-TDMA includes three main features:(1)In a distributed way,nodes in the network select transmitting slots according to the congestion situation of the local air interface.(2)In a selforganization way,nodes dynamically adjust the resource occupancy ratio according to the queue length of neighbouring nodes within two-hop range.(3)In a piggyback way,the control information is transmitted together with the payload to reduce the overhead.We design the whole mechanisms,implement them in NS-3 and evaluate the performance of DSO-TDMA compared with another dynamic TDMA MAC protocol,EHR-TDMA.Results show that the end-to-end throughput of DSO-TDMA is at most 51.4%higher than that of EHR-TDMA,and the average access delay of DSO-TDMA is at most 66.05%lower than that of EHR-TDMA. 展开更多
关键词 dynamic TDMA media access control wide area broadband ad hoc networks
在线阅读 下载PDF
Nonlinear Interference-Aware Routing,Wavelength and Power Allocation in C+L+S Multi-Band Optical Networks
10
作者 Zhang Xu Xie Wang +4 位作者 Feng Chuan Zeng Hankun Zhou Shanshan Zhang Fan Gong Xiaoxue 《China Communications》 2025年第4期129-142,共14页
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res... Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks. 展开更多
关键词 multiband optical communications multiband optical networks power allocation wavelength assignment
在线阅读 下载PDF
When Communication Networks Meet Federated Learning for Intelligence Interconnecting:A Comprehensive Survey and Future Perspective
11
作者 Sha Zongxuan Huo Ru +3 位作者 Sun Chuang Wang Shuo Huang Tao F.Richard Yu 《China Communications》 2025年第7期74-94,共21页
With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelli... With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelligent models.However,these data often contain sensitive information of users.Federated learning(FL),as a privacy preservation machine learning setting,allows users to obtain a well-trained model without sending the privacy-sensitive local data to the central server.Despite the promising prospect of FL,several significant research challenges need to be addressed before widespread deployment,including network resource allocation,model security,model convergence,etc.In this paper,we first provide a brief survey on some of these works that have been done on FL and discuss the motivations of the Communication Networks(CNs)and FL to mutually enable each other.We analyze the support of network technologies for FL,which requires frequent communication and emphasizes security,as well as the studies on the intelligence of many network scenarios and the improvement of network performance and security by the methods based on FL.At last,some challenges and broader perspectives are explored. 展开更多
关键词 communication networks federated learning intelligence interconnecting machine learning privacy preservation
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
12
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
13
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 MICROGRID electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
A knowledge graph-based reinforcement learning approach for cooperative caching in MEC-enabled heterogeneous networks
14
作者 Dan Wang Yalu Bai Bin Song 《Digital Communications and Networks》 2025年第4期1236-1244,共9页
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge... Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay. 展开更多
关键词 Multi-access edge computing Cooperative caching Resource allocation Knowledge graph Reinforcement learning
在线阅读 下载PDF
Inverse design of broadband and dispersion-flattened highly GeO2-doped optical fibers based on neural networks and particle swarm algorithm
15
作者 LI Runrui WANG Chuncan 《Optoelectronics Letters》 2025年第6期328-335,共8页
Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN mo... Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively. 展开更多
关键词 neural network predict optical fiber dispersion inverse design neural network nn dispersion flattening inverse desig BROADBAND particle swarm optimization pso
原文传递
DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust Networks
16
作者 Wenlong Ke Zilong Li +5 位作者 Peiyu Chen Benfeng Chen Jinglin Lv Qiang Wang Ziyi Jia Shigen Shen 《Computers, Materials & Continua》 2025年第8期3305-3319,共15页
Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Define... Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms. 展开更多
关键词 Zero trust network software-defined networking deep reinforcement learning flow scheduling
在线阅读 下载PDF
Hybrid DF and SIR Forwarding Strategy in Conventional and Distributed Alamouti Space-Time Coded Cooperative Networks
17
作者 Slim Chaoui Omar Alruwaili +1 位作者 Faeiz Alserhani Haifa Harrouch 《Computer Modeling in Engineering & Sciences》 2025年第2期1933-1954,共22页
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-... In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation. 展开更多
关键词 Cooperative communication soft information relaying soft symbols modeling cooperative diversity gain distributed Alamouti space-time code
在线阅读 下载PDF
Interest-aware joint caching,computing,and communication optimization for mobile VR delivery in MEC networks
18
作者 Baojie Fu Tong Tang +1 位作者 Dapeng Wu Ruyan Wang 《Digital Communications and Networks》 2025年第4期1102-1112,共11页
In the upcoming B5G/6G era,Virtual Reality(VR)over wireless has become a typical application,which is an inevitable trend in the development of video.However,in immersive and interactive VR experiences,VR services typ... In the upcoming B5G/6G era,Virtual Reality(VR)over wireless has become a typical application,which is an inevitable trend in the development of video.However,in immersive and interactive VR experiences,VR services typically exhibit high delay,while simultaneously posing challenges for the energy consumption of local devices.To address these issues,this paper aims to improve the performance of VR service in the edge-terminal cooperative system.Specifically,we formulate a joint Caching,Computing,and Communication(3C)VR service policy problem by optimizing the weighted sum of the total VR delivery delay and the energy consumption of local devices.To design the optimal VR service policy,the optimization problem is decoupled into three independent subproblems to be solved separately.To improve the caching efficiency within the network,a Bert-based user interest analysis method is first proposed to accurately characterize the content request behavior.Based on this,a service cost minimum-maximization problem is formulated under the consideration of performance fairness among users.Then,the joint caching and computing scheme is derived for each user with a given allocation of communication resources while a bisection-based communication scheme is acquired with the given information on the joint caching and computing policy.With alternative optimization,an optimal policy for joint 3C based on user interest can be finally obtained.Simulation results are presented to demonstrate the superiority of the proposed user interest-aware caching scheme and the effectiveness of the joint 3C optimization policy while considering user fairness.Our code is available at https://github.com/mrfuqaq1108/Interest-Aware-Joint-3C-Optimization. 展开更多
关键词 VR service performance Edge-terminal cooperative system Interest analysis User fairness
在线阅读 下载PDF
Capacity and delay performance analysis for large-scale UAV-enabled wireless networks
19
作者 Bonan Yin Chenxi Liu Mugen Peng 《Digital Communications and Networks》 2025年第4期1028-1040,共13页
In this paper,we analyze the capacity and delay performance of a large-scale Unmanned Aerial Vehicle(UAV)-enabled wireless network,in which untethered and tethered UAVs deployed with content files move along with mobi... In this paper,we analyze the capacity and delay performance of a large-scale Unmanned Aerial Vehicle(UAV)-enabled wireless network,in which untethered and tethered UAVs deployed with content files move along with mobile Ground Users(GUs)to satisfy their coverage and content delivery requests.We consider the case where the untethered UAVs are of limited storage,while the tethered UAVs serve as the cloud when the GUs cannot obtain the required files from the untethered UAVs.We adopt the Ornstein-Uhlenbeck(OU)process to capture the mobility pattern of the UAVs moving along the GUs and derive the compact expressions of the coverage probability and capacity of our considered network.Using tools from martingale theory,we model the traffic at UAVs as a two-tier queueing system.Based on this modeling,we further derive the analytical expressions of the network backlog and delay bounds.Through numerical results,we verify the correctness of our analysis and demonstrate how the capacity and delay performance can be significantly improved by optimizing the percentage of the untethered UAVs with cached contents. 展开更多
关键词 Unmanned aerial vehicle Ornstein-Uhlenbeck process Martingale theory
在线阅读 下载PDF
Endogenous Security Through AI-Driven Physical-Layer Authentication for Future 6G Networks
20
作者 MENG Rui FAN Dayu +2 位作者 XU Xiaodong LYU Suyu TAO Xiaofeng 《ZTE Communications》 2025年第1期18-29,共12页
To ensure the access security of 6G,physical-layer authentication(PLA)leverages the randomness and space-time-frequency uniqueness of the channel to provide unique identity signatures for transmitters.Furthermore,the ... To ensure the access security of 6G,physical-layer authentication(PLA)leverages the randomness and space-time-frequency uniqueness of the channel to provide unique identity signatures for transmitters.Furthermore,the introduction of artificial intelligence(AI)facilitates the learning of the distribution characteristics of channel fingerprints,effectively addressing the uncertainties and unknown dynamic challenges in wireless link modeling.This paper reviews representative AI-enabled PLA schemes and proposes a graph neural network(GNN)-based PLA approach in response to the challenges existing methods face in identifying mobile users.Simulation results demonstrate that the proposed method outperforms six baseline schemes in terms of authentication accuracy.Furthermore,this paper outlines the future development directions of PLA. 展开更多
关键词 physical-layer authentication artificial intelligence wireless security intelligent authentication
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部