The feasibility to use electron beam welding to join the nominal compositionTi-48Al-2Cr-2Nb (at. percent) alloy was assessed. The microstructure characterization and crackingsusceptibility of the joints were evaluated...The feasibility to use electron beam welding to join the nominal compositionTi-48Al-2Cr-2Nb (at. percent) alloy was assessed. The microstructure characterization and crackingsusceptibility of the joints were evaluated by means of OM, SEM, XRD, and microhardness. It wasfound that the welded microstructure exhibited columnar and dendritic structures. Microstructuralconstituents in the fusion zone were a massive gamma structure and some amount of lamellar structureconsisting of alternating platelets of alpha_2 and gamma. The major contributing factor to thesusceptibility to solidification cracking was microsturctural change in this study for thesuppression of a phase decomposition leading to produce more retained alpha_2 brittle phase.Compared with transgranular cleavage fracture in the base metal, the weld metal exhibited mainlytranslamellar fracture.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6 Al alloys were evaluated in this study. The experimental results show that the fracture locations of t...The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6 Al alloys were evaluated in this study. The experimental results show that the fracture locations of the joints are different for the different Al alloys, and they are affected by the FSW parameters. When the joints are free of welding defects, the AA1050-H24 joints are fractured in the HAZ and TMAZ on the AS and the fracture parts undergo a large amount of plastic deformation, while the AA6061-T6 joints are fractured in the HAZ on the RS and the fracture surfaces are inclined a certain degree to the bottom surfaces of the joints. When some welding defects exist in the joints, the AA1050-H24 joints are fractured on the RS or AS, the AA6061-T6 joints are fractured on the RS, and all the fracture locations are near to the weld center. The fracture locations of the joints are dependent on the internal structures of the joints and can be explained by the microhardness profiles and defect morphologies of the joints.展开更多
The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. Th...The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) The maximum tensile strength efficiency of the AA1050-H24 joints is similar to that of the AA6061-T6 joints, i.e. 79% and 77%, respectively.展开更多
文摘The feasibility to use electron beam welding to join the nominal compositionTi-48Al-2Cr-2Nb (at. percent) alloy was assessed. The microstructure characterization and crackingsusceptibility of the joints were evaluated by means of OM, SEM, XRD, and microhardness. It wasfound that the welded microstructure exhibited columnar and dendritic structures. Microstructuralconstituents in the fusion zone were a massive gamma structure and some amount of lamellar structureconsisting of alternating platelets of alpha_2 and gamma. The major contributing factor to thesusceptibility to solidification cracking was microsturctural change in this study for thesuppression of a phase decomposition leading to produce more retained alpha_2 brittle phase.Compared with transgranular cleavage fracture in the base metal, the weld metal exhibited mainlytranslamellar fracture.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
文摘The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6 Al alloys were evaluated in this study. The experimental results show that the fracture locations of the joints are different for the different Al alloys, and they are affected by the FSW parameters. When the joints are free of welding defects, the AA1050-H24 joints are fractured in the HAZ and TMAZ on the AS and the fracture parts undergo a large amount of plastic deformation, while the AA6061-T6 joints are fractured in the HAZ on the RS and the fracture surfaces are inclined a certain degree to the bottom surfaces of the joints. When some welding defects exist in the joints, the AA1050-H24 joints are fractured on the RS or AS, the AA6061-T6 joints are fractured on the RS, and all the fracture locations are near to the weld center. The fracture locations of the joints are dependent on the internal structures of the joints and can be explained by the microhardness profiles and defect morphologies of the joints.
文摘The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) The maximum tensile strength efficiency of the AA1050-H24 joints is similar to that of the AA6061-T6 joints, i.e. 79% and 77%, respectively.