Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this pape...Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.展开更多
In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transpor...In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.展开更多
The origin of the Internet can be traced back to the late 1960s.As the progenitor of the Internet,the Advanced Research Projects Agency Network(ARPANET)was the first wide-area packetswitching network,with the main goa...The origin of the Internet can be traced back to the late 1960s.As the progenitor of the Internet,the Advanced Research Projects Agency Network(ARPANET)was the first wide-area packetswitching network,with the main goal of enabling access to remote computers and exchanging data among several authorized computers.Over the latest decade,the Internet has achieved massive development.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM009the National Natural Science Foundation of China(NSFC) under Grant 61602030 U1404611,61301081+1 种基金the Project Funded by China Postdoctoral Science Foundation under Grant No.2016T90031,2015M570028 and 2015M580970the Program for Science & Technology Innovation Talents in the University of Henan Province under Grant No.16HASTIT035
文摘Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2014JBM011 and No.2014YJS021in part by NSFC under Grant No.62171200,61422101,and 62132017+2 种基金in part by the Ph.D.Programs Foundation of MOE of China under Grant No.20130009110014in part by "NCET" under Grant No.NCET-12-0767in part by China Postdoctoral Science Foundation under Grant No.2015M570028,2015M580970
文摘In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.
基金supported by the National Key Research and Development Program(2018YFE0206800)the National Natural Science Foundation of Beijing(4212010)the Major Key Project of Peng Cheng Laboratory(PCL2022Y04)。
文摘The origin of the Internet can be traced back to the late 1960s.As the progenitor of the Internet,the Advanced Research Projects Agency Network(ARPANET)was the first wide-area packetswitching network,with the main goal of enabling access to remote computers and exchanging data among several authorized computers.Over the latest decade,the Internet has achieved massive development.