To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and agi...To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.展开更多
To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pit...To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pitch-based carbon fiber/thermoplastic polyurethane/epoxy(CMPCF/TPU/epoxy)composite filament and its preparation process in this study.The composite filament is based on the high thermal conductivity of CMPCF,the high elasticity of TPU,and the high-temperature resistance of epoxy.The tensile strength and thermal conductivity of the CMPCF/TPU/epoxy composite filament were tested.The CMPCF/TPU/epoxy composites are formed by 3D printing technology,and the composite filament is laid according to the direction of heat conduction so that the printed part can meet the needs of directional heat conduction.The experimental results show that the thermal conductivity of the printed sample is 40.549 W/(m·K),which is 160 times that of pure epoxy resin(0.254 W/(m·K)).It is also approximately 13 times better than that of polyacrylonitrile carbon fiber/epoxy(PAN-CF/epoxy)composites.This study breaks through the technical bottleneck of poor printability of CMPCF.It provides a new method for achieving directional thermal conductivity printing,which is important for the development of complex high-performance thermal conductivity products.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,52301058 and 52471042)the National MCF Energy R&D Program of China(No.2018YFE0306102)+1 种基金the China Postdoctoral Science Foundation(No.2023M732183)the Postdoctoral Fellowship Program of CPSF(No.GZB20230399).
文摘To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.
基金supported by the National Natural Science Foundation of China(Nos.52175474 and 52275498)。
文摘To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pitch-based carbon fiber/thermoplastic polyurethane/epoxy(CMPCF/TPU/epoxy)composite filament and its preparation process in this study.The composite filament is based on the high thermal conductivity of CMPCF,the high elasticity of TPU,and the high-temperature resistance of epoxy.The tensile strength and thermal conductivity of the CMPCF/TPU/epoxy composite filament were tested.The CMPCF/TPU/epoxy composites are formed by 3D printing technology,and the composite filament is laid according to the direction of heat conduction so that the printed part can meet the needs of directional heat conduction.The experimental results show that the thermal conductivity of the printed sample is 40.549 W/(m·K),which is 160 times that of pure epoxy resin(0.254 W/(m·K)).It is also approximately 13 times better than that of polyacrylonitrile carbon fiber/epoxy(PAN-CF/epoxy)composites.This study breaks through the technical bottleneck of poor printability of CMPCF.It provides a new method for achieving directional thermal conductivity printing,which is important for the development of complex high-performance thermal conductivity products.