期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Learned distributed image compression with decoder side information
1
作者 Yankai Yin Zhe Sun +2 位作者 Peiying Ruan Ruidong Li Feng Duan 《Digital Communications and Networks》 2025年第2期349-358,共10页
With the rapid development of digital communication and the widespread use of the Internet of Things,multi-view image compression has attracted increasing attention as a fundamental technology for image data communica... With the rapid development of digital communication and the widespread use of the Internet of Things,multi-view image compression has attracted increasing attention as a fundamental technology for image data communication.Multi-view image compression aims to improve compression efficiency by leveraging correlations between images.However,the requirement of synchronization and inter-image communication at the encoder side poses significant challenges,especially for constrained devices.In this study,we introduce a novel distributed image compression model based on the attention mechanism to address the challenges associated with the availability of side information only during decoding.Our model integrates an encoder network,a quantization module,and a decoder network,to ensure both high compression performance and high-quality image reconstruction.The encoder uses a deep Convolutional Neural Network(CNN)to extract high-level features from the input image,which then pass through the quantization module for further compression before undergoing lossless entropy coding.The decoder of our model consists of three main components that allow us to fully exploit the information within and between images on the decoder side.Specifically,we first introduce a channel-spatial attention module to capture and refine information within individual image feature maps.Second,we employ a semi-coupled convolution module to extract both shared and specific information in images.Finally,a cross-attention module is employed to fuse mutual information extracted from side information.The effectiveness of our model is validated on various datasets,including KITTI Stereo and Cityscapes.The results highlight the superior compression capabilities of our method,surpassing state-of-the-art techniques. 展开更多
关键词 Digital communication Image compression Side information Channel-spatial attention module Cross-attention module
在线阅读 下载PDF
天体物理成团研究中的非规则访存优化 被引量:1
2
作者 郝赫 司雨蒙 +2 位作者 韦建文 文敏华 林新华 《计算机科学与探索》 CSCD 北大核心 2017年第1期80-90,共11页
HGGF(halo-based galaxy group finder)算法实现了基于暗物质晕的星系找群,在研究宇宙大尺度结构及宇宙的演化等领域中占有至关重要的地位。但由于数据规模的增长,急需对HGGF算法进行优化,以缩短运行时间。经分析,算法的热点部分耗时受... HGGF(halo-based galaxy group finder)算法实现了基于暗物质晕的星系找群,在研究宇宙大尺度结构及宇宙的演化等领域中占有至关重要的地位。但由于数据规模的增长,急需对HGGF算法进行优化,以缩短运行时间。经分析,算法的热点部分耗时受到非规则访存的严重影响,因此针对算法的结构和非规则访存模型,提出了数据预排序方法,并分析了该方法如何影响访存过程。在此基础上,利用数据对齐、循环分解进一步优化访存效率,利用负载均衡和互斥变量私有化的方法提高了Open MP的并行效率,最终将HGGF应用使用12线程加速11.6倍,同时取得了更好的可扩展性。主要有三点贡献:(1)分析了HGGF算法的非规则访存问题;(2)提出并分析了数据预排序方法;(3)使用数据对齐、循环分解、负载均衡、互斥变量私有化方法提高了HGGF应用的并行性能。 展开更多
关键词 天体物理成团 非规则访存优化 数据预排序 并行计算
在线阅读 下载PDF
激光等离子体相互作用模拟的并行和加速研究
3
作者 武海鹏 文敏华 +1 位作者 SEE Simon 林新华 《计算机科学与探索》 CSCD 北大核心 2018年第4期550-558,共9页
随着生成超短激光脉冲技术的不断发展,对这种激光脉冲和等离子体相互作用进行动力学描述也变得越来越重要。PIC(particle-in-cell)是一种在等离子体物理中,研究充能粒子在电磁场中运动轨迹的广泛采用的方法。尽管现在已经有一些在GPU上... 随着生成超短激光脉冲技术的不断发展,对这种激光脉冲和等离子体相互作用进行动力学描述也变得越来越重要。PIC(particle-in-cell)是一种在等离子体物理中,研究充能粒子在电磁场中运动轨迹的广泛采用的方法。尽管现在已经有一些在GPU上的PIC方法的实现,但是基于激光等离子体相互作用模拟的特点,仍然有很多重要问题可以尝试其他解决思路。提出了一种把初始的基于CPU的LPI模拟代码完整移植到GPU上的可行方法。提出了一系列加速初始的GPU版本的方法:动态冗余算法、混合精度算法、粒子排序算法。利用并且评估了GPUDirect RDMA(remote direct memory access)技术,其可以提高MPI的通信性能。实验结果证明,与初始的GPU版本相比,"Scatter"阶段加速比为6.1倍,当MPI传输数据大于3 KB时,通信过程提速了2.8倍。这些研究证明了针对模拟应用和GPU集群的特点进行特殊的优化能对性能带来显著的提升。 展开更多
关键词 激光等离子体相互作用 粒子网格模拟 统一计算设备架构(CUDA) CUDA优化 GPUDirect RDMA
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部