The primary goal of this report is to describe the operational concepts of NASA’s ACTIVATE mission. ACTIVATE hopes to improve the understanding of aerosol dispersion and models, provide accurate data for aerosols’ c...The primary goal of this report is to describe the operational concepts of NASA’s ACTIVATE mission. ACTIVATE hopes to improve the understanding of aerosol dispersion and models, provide accurate data for aerosols’ characterization and ozone profiles, and establish knowledge of the relationships between aerosols and water. ACTIVATE’s science objectives are to quantify Na-CCN-Nd relationships and reduce uncertainty in model cloud droplet activation parameterizations, improve process-level understanding and model representation of factors governing cloud micro/macro-physical properties and how they couple with cloud effects on aerosol, plus assess advanced remote sensing capabilities for retrieving aerosol and cloud properties related to aerosol-cloud interactions. ACTIVATE utilizes the fixed-wing B-200 King Air to collect data. Data collected by ACTIVATE is highly relevant for meteorologists and environmental scientists looking to understand more about aerosol-cloud formations. Finally, ACTIVATE is a 5-year mission spanning from January 2019 to December 2023 and has used, and will continue to use, instruments such as the High Spectral Resolution Lidar-2 (HSRL-2), the Research Scanning Polarimeter (RSP), and the Diode Laser Hygrometer (DLH).展开更多
The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave Observatory) was introduced in 1986 as part of NASA’s planned return to the Moon by the end of the last century. That return to the Moon missio...The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave Observatory) was introduced in 1986 as part of NASA’s planned return to the Moon by the end of the last century. That return to the Moon mission was cancelled, but is once again planned as Artemis in 2024. In this paper, the feasibility of such a Lunar LIGO as part of NASA’s return there will be discussed for that program. Details of the physics of the original Lunar LIGO proposal as a potential portion of future lunar base astronomy and astrophysics designs are presented. Results from NASA’s original planned return to the Moon to establish a gravitational wave observatory there are presented and discussed.展开更多
Over the past fi ve years, tropical activity in the East Pacifi c has increased, while declining in the Atlantic Basin. In addition, during El Ni?o years, warmer than average sea surface temperatures further increase ...Over the past fi ve years, tropical activity in the East Pacifi c has increased, while declining in the Atlantic Basin. In addition, during El Ni?o years, warmer than average sea surface temperatures further increase the likelihood of tropical cyclone formation in the East Pacifi c. Hurricane fi eld campaigns used the Ku-/Ka-band HighAltitude Wind and Rain Airborne Profi ler(HIWRAP) radar on the Global Hawk(GH) unmanned aircraft, in GRIP(Genesis and Rapid Intensifi cation Processes 2010), HS3(Hurricane and Severe Storm Sentinel 2012-14), and the NOAA Sensing Hazards with Operational Unmanned Technology(SHOUT 2015-16) fi eld campaigns. Although originally designed for the GH, the X-band high-altitude RADar(EXRAD) has yet to be integrated and fl own on an unmanned aerial vehicle. EXRAD will provide data with less attenuation of signal over deep convection as well as better estimates of three-dimensional winds with its nadir-pointing beam. As part of the NASA Hand On Project Experience(HOPE) Training Opportunity, our team proposed to fl y the AV-6 GH aircraft with the EXRAD radar, the High Altitude MMIC Sounding Radiometer(HAMSR), and NOAA Advanced Vertical Atmospheric Profi ling System(AVAPS) dropsondes to investigate genesis and/or rapid intensifi cation(RI) of an East Pacifi c hurricane by measuring both the environment and interior structures. Information on planned activities primarily focused on the EXRAD high-altitude radar integration for the July-August 2017 science fl ight will be presented.展开更多
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
On-time mapping dynamics of crop area,yield,and production is important for global food security.Such information,however,is often not available.Here,we used satellite information,a spectral-phenology integration appr...On-time mapping dynamics of crop area,yield,and production is important for global food security.Such information,however,is often not available.Here,we used satellite information,a spectral-phenology integration approach for mapping crop area,and a machine learning model for predicting yield in the war-stricken Ukraine.We found that in Ukraine crop area and production declined in 2022 relative to 2017–2021 and 2021 for wintertriticeae crops,which was invaded before the cropping season in February of that year.At the same time,crop area and production for rapeseed increased in Ukraine,with yields consistently lower by 6.5%relative to 2021.The low precipitation and the Russian-Ukrainian conflict-related factors contributed to such yield variations by-1.3%and-0.9%for winter-triticeae crops and-4.2%and-0.5%for rapeseed in 2022.We demonstrate a robust framework for monitoring country-wide crop production dynamics in near real-time,serving as an early-foodsecurity-warning system.展开更多
文摘The primary goal of this report is to describe the operational concepts of NASA’s ACTIVATE mission. ACTIVATE hopes to improve the understanding of aerosol dispersion and models, provide accurate data for aerosols’ characterization and ozone profiles, and establish knowledge of the relationships between aerosols and water. ACTIVATE’s science objectives are to quantify Na-CCN-Nd relationships and reduce uncertainty in model cloud droplet activation parameterizations, improve process-level understanding and model representation of factors governing cloud micro/macro-physical properties and how they couple with cloud effects on aerosol, plus assess advanced remote sensing capabilities for retrieving aerosol and cloud properties related to aerosol-cloud interactions. ACTIVATE utilizes the fixed-wing B-200 King Air to collect data. Data collected by ACTIVATE is highly relevant for meteorologists and environmental scientists looking to understand more about aerosol-cloud formations. Finally, ACTIVATE is a 5-year mission spanning from January 2019 to December 2023 and has used, and will continue to use, instruments such as the High Spectral Resolution Lidar-2 (HSRL-2), the Research Scanning Polarimeter (RSP), and the Diode Laser Hygrometer (DLH).
文摘The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave Observatory) was introduced in 1986 as part of NASA’s planned return to the Moon by the end of the last century. That return to the Moon mission was cancelled, but is once again planned as Artemis in 2024. In this paper, the feasibility of such a Lunar LIGO as part of NASA’s return there will be discussed for that program. Details of the physics of the original Lunar LIGO proposal as a potential portion of future lunar base astronomy and astrophysics designs are presented. Results from NASA’s original planned return to the Moon to establish a gravitational wave observatory there are presented and discussed.
文摘Over the past fi ve years, tropical activity in the East Pacifi c has increased, while declining in the Atlantic Basin. In addition, during El Ni?o years, warmer than average sea surface temperatures further increase the likelihood of tropical cyclone formation in the East Pacifi c. Hurricane fi eld campaigns used the Ku-/Ka-band HighAltitude Wind and Rain Airborne Profi ler(HIWRAP) radar on the Global Hawk(GH) unmanned aircraft, in GRIP(Genesis and Rapid Intensifi cation Processes 2010), HS3(Hurricane and Severe Storm Sentinel 2012-14), and the NOAA Sensing Hazards with Operational Unmanned Technology(SHOUT 2015-16) fi eld campaigns. Although originally designed for the GH, the X-band high-altitude RADar(EXRAD) has yet to be integrated and fl own on an unmanned aerial vehicle. EXRAD will provide data with less attenuation of signal over deep convection as well as better estimates of three-dimensional winds with its nadir-pointing beam. As part of the NASA Hand On Project Experience(HOPE) Training Opportunity, our team proposed to fl y the AV-6 GH aircraft with the EXRAD radar, the High Altitude MMIC Sounding Radiometer(HAMSR), and NOAA Advanced Vertical Atmospheric Profi ling System(AVAPS) dropsondes to investigate genesis and/or rapid intensifi cation(RI) of an East Pacifi c hurricane by measuring both the environment and interior structures. Information on planned activities primarily focused on the EXRAD high-altitude radar integration for the July-August 2017 science fl ight will be presented.
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
基金supported by the National Natural Science Foundation of China(Grant No.42061144003).
文摘On-time mapping dynamics of crop area,yield,and production is important for global food security.Such information,however,is often not available.Here,we used satellite information,a spectral-phenology integration approach for mapping crop area,and a machine learning model for predicting yield in the war-stricken Ukraine.We found that in Ukraine crop area and production declined in 2022 relative to 2017–2021 and 2021 for wintertriticeae crops,which was invaded before the cropping season in February of that year.At the same time,crop area and production for rapeseed increased in Ukraine,with yields consistently lower by 6.5%relative to 2021.The low precipitation and the Russian-Ukrainian conflict-related factors contributed to such yield variations by-1.3%and-0.9%for winter-triticeae crops and-4.2%and-0.5%for rapeseed in 2022.We demonstrate a robust framework for monitoring country-wide crop production dynamics in near real-time,serving as an early-foodsecurity-warning system.