In this paper,a stochastic multi-group AIDS model with saturated incidence rate is studied.We prove that the system is persistent in the mean under some parametric restrictions.We also obtain the sufficient condition ...In this paper,a stochastic multi-group AIDS model with saturated incidence rate is studied.We prove that the system is persistent in the mean under some parametric restrictions.We also obtain the sufficient condition for the existence of the ergodic stationary distribution of the system by constructing a suitable Lyapunov function.Our results indicate that the existence of ergodic stationary distribution does not rely on the interior equilibrium of the corresponding deterministic system,which greatly improves upon previous results.展开更多
In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c...In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).展开更多
The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the ...The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the radial symmetry of the solution of the Logarithmic Laplacian system is obtained.展开更多
Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of N...Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of NZVI and displayed better resistance to aggregation and oxidation of NZVI than samples prepared at other temperatures. The NZVI/MC800 material was applied for the elimination of U(Ⅵ) from aqueous solutions. The results suggested that the NZVI/MC800 displayed excellent adsorption capacity(203.94 mg/g)toward U(Ⅵ). The significant adsorption capacity and fast adsorption kinetics were attributed to the presence of well-dispersed NZVI, which could quickly reduce U(Ⅵ) into U(Ⅳ), trapping the vip U(Ⅳ) in the porous biocarbon matrix. The removal of U(Ⅵ) on the NZVI/MC samples was strongly affected by solution pH. The NZVI/MC samples also displayed outstanding reusability for U(Ⅵ) removal after multiple cycles. These findings indicate that NZVI/MC has great potential for remediation of wastewater containing U(Ⅵ).展开更多
The integrated perovskite/organic solar cell(IPOSC) is widely concerned as an effective approach to broaden the spectrum of perovskite solar cell(PerSC) by utilizing near-infrared light of lower bandgap organic semico...The integrated perovskite/organic solar cell(IPOSC) is widely concerned as an effective approach to broaden the spectrum of perovskite solar cell(PerSC) by utilizing near-infrared light of lower bandgap organic semiconductor. Compared to tandem solar cells, the IPOSCs eliminate the preparation of the intermediate layer and simplify the manufacturing process, but retain the advantages of wide light harvesting. Meanwhile, the IPOSCs can maintain the open-circuit voltage as high as PerSCs. This review summarizes the recent developments of perovskite materials and low-bandgap organic conjugated materials applied in solar cells. Then, the working mechanism of IPOSCs and the recent developments of IPOSCs based on low-bandgap donor and acceptor materials are highlighted. Besides, the study of charge dynamic in IPOSC is summarized. Finally, the potential of IPOSCs and approach to improve device performance are also envisaged.展开更多
The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface genera...The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.展开更多
The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homog...The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.展开更多
The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey fluid with variable thermal conductivity is discussed. The temperature dependent thermal conductivity of fluid in an asymmetric channel is ...The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey fluid with variable thermal conductivity is discussed. The temperature dependent thermal conductivity of fluid in an asymmetric channel is taken into account. A dimensionless nonlinear system subject to a long wavelength and a low Reynolds number is solved. The explicit expressions of the stream function, the axial velocity, the pressure gradient, and the temperature are obtained. The effects of all physical parameters on peristaltic transport and heat transfer characteristics are observed from graphical illustrations. The behaviors of θ∈ [0, π/2] and θ∈ [π/2, π] on fluid flow and heat transfer are found to be opposite. Further, the size of trapped bolus is greater for the case of the inclined magnetic field (θ≠ π/2) than that for the case of the transverse magnetic field (θ = π/2). The heat transfer coefficient decreases when the constant thermal conductivity (Newtonian) fluid is changed to the variable thermal conductivity (Jeffrey) fluid.展开更多
This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and c...This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and chemical reactions impacts are added in the nanofluid model. Appropriate transformations lead to the nondimensionalized boundary layer equations. Series solutions for the resulting equations are computed.The role of pertinent parameters on the velocity, temperature, and concentration is analyzed in the outputs. It is revealed that the larger melting parameter enhances the velocity profile while the temperature profile decreases. The surface drag force and heat transfer rate are computed under the influence of pertinent parameters. Furthermore, the homogeneous reaction parameter serves to decrease the surface concentration.展开更多
Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat sourc...Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.展开更多
This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary cond...This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations. The reduced systems are solved for convergent series solutions. The velocity, temperature, and concentration fields are discussed for different physical parameters. The results indi- cate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.展开更多
The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced t...The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.展开更多
In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the ...In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the volume fraction field in a two-dimensional porous medium. By using the Fourier-Laplace transform and the eigenvalue method, the considered variables are obtained analytically. The derived approach is estimated with numerical outcomes which are applied to the porous media with a geometrical simplification. The numerical results for the considered variables are performed and presented graphically. Finally, the outcomes are represented graphically to display the difference among the classical dynamical(CD) coupled, the Lord-Shulman(LS), and the Green-Lindsay(GL) models.展开更多
Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environmentfriendly preparation processes is required for the environment-related applications. In this study,acrylic acid(AA) was g...Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environmentfriendly preparation processes is required for the environment-related applications. In this study,acrylic acid(AA) was grafted onto bentonite(BT) to generate an AA-graft-BT(AA-g-BT)composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett–Emmett–Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI)(U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time,p H value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-secondorder kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.展开更多
This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differenti...This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.展开更多
Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reyno...Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping.展开更多
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are conside...The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.展开更多
The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time re...The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies(radio and microwave) associated with polarization in dielectrics.展开更多
基金The work was supported by NSF of China(11801041,11871473)Foudation of Jilin Province Science and Technology Development(20190201130JC)+1 种基金Scientific Rsearch Foundation of Jilin Provincial Education Department(JJKH20181172KJ,JJKH20190503KJ)Natural Science Foundation of Changchun Normal University.
文摘In this paper,a stochastic multi-group AIDS model with saturated incidence rate is studied.We prove that the system is persistent in the mean under some parametric restrictions.We also obtain the sufficient condition for the existence of the ergodic stationary distribution of the system by constructing a suitable Lyapunov function.Our results indicate that the existence of ergodic stationary distribution does not rely on the interior equilibrium of the corresponding deterministic system,which greatly improves upon previous results.
基金supported by the National Basic Research Program of China (No. 2015CB932200)the CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (No. 116134KYSB20160130)+2 种基金the Natural Science Foundation of Anhui Province (No. 1508085SMF224)the National Natural Science Foundation of China (No. 51474201)the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607)
文摘In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).
基金Supported by the National Natural Science Foundation of China(11501342,12001344)。
文摘The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the radial symmetry of the solution of the Logarithmic Laplacian system is obtained.
基金supported by the National Natural Science Foundation of China (No.21477133)the Key Lab of Photovoltaic and Energy Conservation Materials,Chinese Academy of Sciences is acknowledged
文摘Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of NZVI and displayed better resistance to aggregation and oxidation of NZVI than samples prepared at other temperatures. The NZVI/MC800 material was applied for the elimination of U(Ⅵ) from aqueous solutions. The results suggested that the NZVI/MC800 displayed excellent adsorption capacity(203.94 mg/g)toward U(Ⅵ). The significant adsorption capacity and fast adsorption kinetics were attributed to the presence of well-dispersed NZVI, which could quickly reduce U(Ⅵ) into U(Ⅳ), trapping the vip U(Ⅳ) in the porous biocarbon matrix. The removal of U(Ⅵ) on the NZVI/MC samples was strongly affected by solution pH. The NZVI/MC samples also displayed outstanding reusability for U(Ⅵ) removal after multiple cycles. These findings indicate that NZVI/MC has great potential for remediation of wastewater containing U(Ⅵ).
基金financially supported by the National Key Research and Development Program of China (No.2016YFA0202401)the National Natural Science Foundation of China (Nos.51873007,51961165102 and 21835006)+2 种基金the Fundamental Research Funds for the Central Universities in China (No.2019MS025)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No.LAPS20003)the Outstanding Talent Research Fund of Zhengzhou University (No.32340035)。
文摘The integrated perovskite/organic solar cell(IPOSC) is widely concerned as an effective approach to broaden the spectrum of perovskite solar cell(PerSC) by utilizing near-infrared light of lower bandgap organic semiconductor. Compared to tandem solar cells, the IPOSCs eliminate the preparation of the intermediate layer and simplify the manufacturing process, but retain the advantages of wide light harvesting. Meanwhile, the IPOSCs can maintain the open-circuit voltage as high as PerSCs. This review summarizes the recent developments of perovskite materials and low-bandgap organic conjugated materials applied in solar cells. Then, the working mechanism of IPOSCs and the recent developments of IPOSCs based on low-bandgap donor and acceptor materials are highlighted. Besides, the study of charge dynamic in IPOSC is summarized. Finally, the potential of IPOSCs and approach to improve device performance are also envisaged.
文摘The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.
文摘The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.
文摘The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey fluid with variable thermal conductivity is discussed. The temperature dependent thermal conductivity of fluid in an asymmetric channel is taken into account. A dimensionless nonlinear system subject to a long wavelength and a low Reynolds number is solved. The explicit expressions of the stream function, the axial velocity, the pressure gradient, and the temperature are obtained. The effects of all physical parameters on peristaltic transport and heat transfer characteristics are observed from graphical illustrations. The behaviors of θ∈ [0, π/2] and θ∈ [π/2, π] on fluid flow and heat transfer are found to be opposite. Further, the size of trapped bolus is greater for the case of the inclined magnetic field (θ≠ π/2) than that for the case of the transverse magnetic field (θ = π/2). The heat transfer coefficient decreases when the constant thermal conductivity (Newtonian) fluid is changed to the variable thermal conductivity (Jeffrey) fluid.
文摘This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and chemical reactions impacts are added in the nanofluid model. Appropriate transformations lead to the nondimensionalized boundary layer equations. Series solutions for the resulting equations are computed.The role of pertinent parameters on the velocity, temperature, and concentration is analyzed in the outputs. It is revealed that the larger melting parameter enhances the velocity profile while the temperature profile decreases. The surface drag force and heat transfer rate are computed under the influence of pertinent parameters. Furthermore, the homogeneous reaction parameter serves to decrease the surface concentration.
文摘Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.
文摘This paper studies stratified magnetohydrodynamic (MHD) flow of tan- gent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations. The reduced systems are solved for convergent series solutions. The velocity, temperature, and concentration fields are discussed for different physical parameters. The results indi- cate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.
文摘The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.
基金Project supported by the Deanship of Scientific Research (DSR),King Abdulaziz University,Jeddah(No.DF-782-130-1441)。
文摘In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the volume fraction field in a two-dimensional porous medium. By using the Fourier-Laplace transform and the eigenvalue method, the considered variables are obtained analytically. The derived approach is estimated with numerical outcomes which are applied to the porous media with a geometrical simplification. The numerical results for the considered variables are performed and presented graphically. Finally, the outcomes are represented graphically to display the difference among the classical dynamical(CD) coupled, the Lord-Shulman(LS), and the Green-Lindsay(GL) models.
基金the Special Scientific Fund of Public Welfare Profession of China (No. 201509074)National Natural Science Foundation of China (Nos. 21272236, U1230202)
文摘Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environmentfriendly preparation processes is required for the environment-related applications. In this study,acrylic acid(AA) was grafted onto bentonite(BT) to generate an AA-graft-BT(AA-g-BT)composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett–Emmett–Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI)(U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time,p H value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-secondorder kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.
文摘This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.
文摘Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping.
基金support from Higher Education Commission (HEC) of Pakistan through Ph.D Indigeous Scheme.
文摘The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
文摘The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies(radio and microwave) associated with polarization in dielectrics.